• Title/Summary/Keyword: RWPE-1

Search Result 12, Processing Time 0.041 seconds

Effect of Whey Protein Isolate and Lactobacillus spp. Cell Extracts on Intracellular Antioxidative Activities in Human Prostate Epitherial Cells (유청단백질 및 Lactobacillus spp. 추출물이 전립선 세포 내 항산화 활성에 미치는 영향)

  • 변정열;윤영호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.719-726
    • /
    • 2006
  • Bovine whey protein are rich in cysteine, which is the rate limiting amino acid for synthesis of antioxidant glutathione(GSH). Some strains of Lactobacillus caseihas been reported to contain high level of GSH in cell extracts. The objective ofthis study was to determine whether enzymatically hydrolyzed whey protein isolate(WPI) and cell extract of Lb. casei HY2782 could increase intracellular GSH concentrations and protect against oxidant induced cell death in human prostate epithelial cell line (designated as RWPE1, and PC3MMM2 cells). Treatment of RWPE1 cellsandPC3MMM2 cells with hydrolyzed WPI (500g/ml) significantly increased GSH by28.2% and38.4% respectively. Compared with control cells receiving no hydrolyzed WPI(P<0.05). hydrolyzed WPI and Lb casei HY2782 cell extracts significantly protected RWPE1 and PC3MMM2 cellsfrom oxidant induced cell death compared with controls receiving no WPI. DNA damage associated with oxidant treatment was demonstrated by single cell gel (SCG) electrophoresis.

The therapeutic effects of WSY-0702 on benign prostatic hyperplasia in RWPE-1

  • Oh, Hyun-A;Kwon, Eun Bi;Hwang, Yun Gyeong;Park, Soon Eung;Mok, Ji Ye;Hwang, Sung Yeoun
    • CELLMED
    • /
    • v.7 no.2
    • /
    • pp.8.1-8.7
    • /
    • 2017
  • Benign prostatic hyperplasia (BPH) is one of the major diseases of the urinary system in older men. WSY-0702 is the extracted from the traditional medicinal plant; Seoritae, and it has effects of anti-obesity, chronic cervical pain, and anti-oxidant. The present study aimed to investigate the therapeutic potential of WSY-0702 in the prevention and treatment of BPH. Several parameters including inflammatory mediators, hormones, and oxidative stress (OS) have been considered to play a role in the development of BPH. Prostate tissue damage and OS may lead to compensatory cellular proliferation with resulting hyperplastic growth. An in vitro study showed that proliferation inhibited the human prostate epithelial cell line RWPE-1 in a dose-dependent manner. In cell line, the cell cycle at the G2/M and G0/G1 phase and downregulated the expression of CyclineB1 (CCNB1) and CyclineD1 (CCND1). In addition, we measured the $H_2O_2$-induced OS damage using RWPE-1 cells. We examined the relative expression of protein involved in the regulation of prostate apoptosis: transforming growth factor (TGF)-${\beta}$, a negative growth factor able to induced prostate apoptosis under physiological conditions. These results suggest that WSY-0702 that can inhibit the growth of prostate epithelial cell by a mechanism that may involve arresting the cell cycle and downregulating CCNB1 and CCND1 expression. In addition, WSY-0702 exposure resulted in significant protective effects in $H_2O_2$-stressed PWPE-1 cells by reduction in TGF-${\beta}$ levels.

Agaricus blazei Mycelial Liquid Culture Extract Containing Eritadenine Improves Benign Prostatic Hyperplasia-related Biochemical Markers in RWPE-1 Cells through Anti-inflammatory and Anti-oxidative Actions (RWPE-1 전립선세포에서 eritadenine을 함유한 신령버섯균사체 액체배양물의 항염증효과 및 항산화효과에 의한 전립선비대증 관련 biochemical marker 개선 효과)

  • Ha, Yeong Lae;Moon, Yun-Gu;Kim, Na-Hyun;Heo, Jeong Doo;Cho, Min Jung;Kim, Ye Ra;Kim, Young Suk;Kim, Jeong OK
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1147-1155
    • /
    • 2018
  • Agaricus blazei mycelial liquid culture extract (ABMLCE) promoted the production of testosterone (TS) in TM-3 mouse Leydig testis cells. Now, we report that ABMLCE containing eritadenine (EA) as a minor constituent (15.3 mg/100 g) reduced $5{\alpha}-reductase$ 2 ($5{\alpha}-R2$) enzyme activity and dihydrotestosterone (DHT) content which are key constituents for the benign prostatic hyperplasia (BPH) inductions. RWPE-1 prostate cells were grown in a Keratinocyte serum-free medium (K-SFM) containing ABMLCE (0~50 ppm), EA (0~10 ppm,), and finasteride (FS $10{\mu}M$: a positive control) in a 24-well plate for 24 hr. Supernatants collected from cell-cultured media were used for the assay of $5{\alpha}-R2$, superoxide dismutase (SOD), catalase (CAT) and cyclooxygenase-2 (COX-2) enzyme activities, and for TS, DHT, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and $interleukin-1{\beta}$ ($IL-1{\beta}$) contents by their assay kits. The $5{\alpha}-R2$ activity and DHT content were proportionally reduced (p<0.05) to concentrations of ABMLCE. The SOD and CAT enzyme activities were significantly (p<0.05) elevated concomitant with ABMLCE concentrations, while COX-2, $TNF-{\alpha}$ and $IL-1{\beta}$ showed reverse results (p<0.05). Similarly, the effects of EA were similar to those of ABMLCE. Efficacies of ABMLCE 50 ppm and EA 10 ppm in $5{\alpha}-R2$ and DHT reduction were similar to those of $10{\mu}M$ FS. These results suggest that ABMLCE and EA reduced $5{\alpha}-R2$ and DHT through their anti-inflammatory and anti-oxidative actions. This implies that ABMLCE containing EA could be a beneficial material in the cure of BPH in humans.

6-sialyllactose ameliorates dihydrotestosterone-induced benign prostatic hyperplasia through suppressing VEGF-mediated angiogenesis

  • Kim, Eun-Yeong;Jin, Bo-Ram;Chung, Tae-Wook;Bae, Sung-Jin;Park, Hyerin;Ryu, Dongryeol;Jin, Ling;An, Hyo-Jin;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.560-565
    • /
    • 2019
  • Benign prostatic hyperplasia (BPH), a common disease in elderly males, is accompanied by non-malignant growth of prostate tissues, subsequently causing hypoxia and angiogenesis. Although VEGF-related angiogenesis is one of the therapeutic targets of prostate cancer, there is no previous study targeting angiogenesis for treatment of BPH. Dihydrotestosterone (DHT)-induced expressions of vascular endothelial growth factor (VEGF) in prostate epithelial RWPE-1 cells and human umbilical vascular endothelial cells (HUVECs). Conditioned media (CM) from DHT-treated RWPE-1 cells were transferred to HUVECs. Then, 6SL inhibited proliferation, VEGFR-2 activation, and tube formation of HUVECs transferred with CM from DHT-treated RWPE-1 cells. In the rat BPH model, 6SL reduced prostate weight, size, and thickness of the prostate tissue. Formation of vessels in prostatic tissues were also reduced with 6SL treatment. We found that 6SL has an ameliorative effect on in vitro and in vivo the BPH model via inhibition of VEGFR-2 activation and subsequent angiogenesis. These results suggest that 6SL might be a candidate for development of novel BPH drugs.

The Extract of Couroupita guianensis Aubl. Ameliorates Benign Prostatic Hyperplasia In Vitro and In Vivo

  • Kim, Yun Na;Kim, Na-Hyun;Souliya, Onevilay;Uddin, Salah;Lee, Sang Woo;Kim, Soo-Yong;Choi, Sangho;Heo, Jeong-Doo;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.274-279
    • /
    • 2021
  • The therapeutic effects of the leaves of Couroupita guianensis, a large tropical tree in the family of Lecythidaceae improving testosterone-induced Benign Prostatic Hyperplasia (BPH) were tested in vitro and in vivo. In BPH rats induced by castration and testosterone treatment, the prostate index was improved in groups administered with the extracts of C. guianensis extracted with 50%-, 100%-ethanol or boiling water, which was comparable with positive control, finasteride. The extract C. guianensis leaves showed significant inhibition on the expressions of type 2 5-alpha reductase (5αR) in RWPE-1 human prostatic epithelial cells, and effectively attenuated the expressions of androgen receptor, type 2 5αR and proliferating cell nuclear antigen in LNCap human prostatic adenocarcinoma cells. The leaves of C. guianensis that exerted evident suppression on BPH-related biomarkers in vitro and improvement of prostate index in vivo has a potential therapeutic use for the treatment of BPH.

Interaction between Trichomonas vaginalis and the Prostate Epithelium

  • Kim, Jung-Hyun;Han, Ik-Hwan;Kim, Sang-Su;Park, Soon-Jung;Min, Duk-Young;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-$1{\beta}$, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.

Induction of Metallothionein Gene by Laminin in Normal and Malignant Human Prostate Epithelial Cells (악성 단계별 인간 전립선 암세포에서 라미닌에 의한 metallothionein 유전자 발현유도 현상 연구)

  • Ock, Mee-Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.529-533
    • /
    • 2011
  • Metallothioneins (MT) are a group of low-molecular weight, cysteine-rich, intracellular proteins that are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins is associated with protection against DNA damage, oxidative stress, and apoptosis. Many studies have shown increased expression of MT in various human tumors, whereas MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. Using Northern blot analysis, we found that laminin induced expression of MT-1 in HSG and PC12 cells, which can be differentiated by laminin, but had no effect on MB-231, MDA-435, and PC-3 cells, which cannot be differentiated by laminin. In addition, we analyzed the expression level of the MT-1 gene in five prostate cancer cell lines possessing different metastatic potential. The expression of MT-1 in normal and less malignant cells (RWPE-1 and WPE1-NA22) was high and up-regulated by laminin, whereas the expression of MT-1 in WPE1-NB14, WPE1-NB11, and WPE1-NB26 cells (malignant) was extremely low and not elevated by laminin. These results suggest that the MT-1 gene is involved in laminin-mediated differentiation and affects the metastatic potential of tumor cells.

Roles of MicroRNA-21 and MicroRNA-29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer

  • Mohamad, Maisarah;Wahab, Norhazlina Abdul;Yunus, Rosna;Murad, Nor AzianAbdul;Zainuddin, Zulkifli Md;Sundaram, Murali;Mokhtar, Norfilza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3437-3445
    • /
    • 2016
  • Background: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be down-regulated in clinical samples, most likely due to the post-transcriptional modification by microRNAs. Targeted genes would be up-regulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors. Materials and Methods: MicroRNA software predicted that miR-21 targets VCL while miR-29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalin-fixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE-1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels. Results: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down-regulated while CX3CL1 was up-regulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly upregulated while CX3CL1 mRNA was significantly down-regulated compared to the RWPE-1 case. Conclusions: The down-regulation of VCL in FFPE specimens is most likely regulated by miR-21 based on the in vitro evidence but the exact mechanism of how miR-21 can regulate VCL is unclear. Up-regulated in CaP, CX3CL1 was found not regulated by miR-29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNA-mRNA interactions may provide additional knowledge for individualized study of cancers.

Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells (Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과)

  • Kang, Hye-In;Kim, Jae-Yong;Cho, Hyun-Dong;Park, Kyung-Wuk;Kang, Jum-Soon;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1119-1125
    • /
    • 2010
  • To evaluate resveratrol as a prostate cancer preventive material, we investigated its anti-proliferative and apoptotic effects in RC-58T/h/SA#4 primary human prostate cancer cells. Resveratrol significantly decreased the number of viable RC-58T/h/SA#4 cells in a dose- and time-dependent manner. Resveratrol showed cytotoxicity against RC-58T/h/SA#4, LNCaP, PC-3 human prostate cancer cells with $IC_{50}$ values of 245, 320 and $340\;{\mu}M$, respectively. However the cytotoxic potential of resveratrol against normal RWPE-1 cells was lower ($IC_{50}=982\;{\mu}M$). Resveratrol induced cell death as evidenced by the increased formation of apoptotic bodies, nuclear condensation, sub-G1 phase, and DNA fragmentation. Resveratrol activated initiator caspases 8, and 9 as well as effector caspase 3 in a dose-dependent manner. Furthermore, the general caspase inhibitor z-VAD-fmk significantly inhibited resveratrol-induced apoptosis compared to cells without treatment. These results clearly indicate that resveratrol-induced apoptosis was dependent on caspase activation. Further, resveratrol modulated the down regulation of Bcl-2 (anti-apoptotic), and Bid. However, the level of Bax (pro-apoptotic) remained unchanged. These results suggest that resveratrol induced apoptosis in RC-58T/h/SA#4 cells via a mitochondrial-mediated caspase-dependent pathway, suggesting therapeutic potential against prostate cancer.

Biological activity of Euonymus alatus (Thunb.) Sieb. wing extracts (화살나무 날개 추출물의 생리활성)

  • Hye-Ji Min;Du-Hyun Kim;Kwon-Il Seo
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.358-368
    • /
    • 2023
  • Euonymus alatus (Thunb.) Sieb., also known as the arrow tree in Korea, is a plant in East Asia used in traditional medicine and food. In particular, the wings of E. alatus are rich in phenolic compounds. This study evaluated the antioxidant, α-glucosidase inhibition, and anti-cancer activities of E. alatus wing extracts. The radical and hydrogen peroxide scavenging acitvities and reducing the power of 1,000 ㎍/mL E. alatus wing extracts, were similar to those of the positive control (0.1% BHT, 0.1% α-tocopherol). In addition, ethanol and methanol extract at 250 ㎍/mL showed 95.70 and 94.99% of α-glucosidase inhibition activity, respectively. The ethanol extract of E. alatus wings had the highest total polyphenol and flavonoid contents (867.8 mg% and 521.7 mg%, respectively). The E. alatus wing extracts significantly decreased the cell viability of LNCaP human prostate cancer cells (p<0.001), MDA-MB-231 human breast cancer cells (p<0.001), and HT-29 human colon cancer cells (p<0.001) in a dose-dependent manner. However, there was no significant effect on B16 mouse melanoma cells. Notably, the ethanol extracts showed higher cancer cell growth inhibitory activity in LNCaP and HT-29 cells than the other extracts. These results suggest that E. alatus wing extracts could have significant clinical applications, and our results can be used as basic data for future functional food material development.