• Title/Summary/Keyword: RUNOFF

Search Result 3,377, Processing Time 0.032 seconds

Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road (청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정)

  • Lee, Chun-Won;Kang, Seon-Hong;Choi, I-Song;An, Tae-Ung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.

Development of Runoff Hydrograph Model for the Derivation of Optimal Design Flood of Agricultural Hydraulic Structures(1) (농업수리구조물의 적정설계홍수량 유도를 위한 유출수문곡선모형의 개발(I))

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.34-47
    • /
    • 1995
  • It is experienced fact as a regular annual event that the structure to he designed on unreasonable flood for the agricultural structures including reservoirs have been brought not only loss of lives, but also enormous property damage. For the solution of this problem at issue, this study was conducted to develop an optimal runoff hydrograph model by comparison of the peak flows and time to peak between observed and simulated flows derived by linear time-invariant and linear time-variant models under the condition of having a short duration of heavy rainfall with uniform rainfall intensity at nine small watersheds which are within the range of 55.9 to 140.7 square kilometers in area in Han, Geum, Nagdong and Yeongsan Rivers. The results obtained through this study can be summarized as follows. 1. Storage constants and Gamma function arguments were calculated within the range of 1.2 to 6.42 and of 1.28 to 8.05 respectively by the moment method as the parameters for the analysis of runoff hydrograph based on linear time-invariant model. 2. Parameters for both linear time-invariant and linear time-variant models were calibrated with nine gaged watershed data, using a trial and error method. The resulting parameters including Gamma function argument, N and storage constant, K for linear time-invariant model were related statistically to watershed characteristic variables such as area, slope, length of main stream and the centroid length of the basin. 3. Average relative errors of the simulated peak discharge of calibrated runoff hydrographs by using linear time-variant and linear time-invariant models were shown to be 0.75 and 5.42 percent respectively to the peak of observed runoff hydrographs. Correlation coefficients for the statistical analysis in the same condition were shown to be 0.999 and 0.978 with a high significance respectively. Therefore, it can be concluded that the accuracy of a linear time-variant model is approaching more closely to the observed runoff hydrograph than that of a linear time-invariant model in the applied watersheds. 4. Average relative errors of the time to peak of calibrated runoff hydrographs by using linear time-variant and linear time-invariant models were shown to be 16.44 and 19.89 percent respectively to the time to peak of observed runoff hydrographs. Correlation coefficients in the same condition were also shown to be 0.999 and 0.886 with a high significance respectively. 5. It can be seen that the shape of simulated hydrograph based on a linear time- variant model is getting closer to the observed runoff hydrograph than that of a linear time-invariant model in the applied watersheds. 6. Two different models were verified with different rainfall-runoff events from data for the calibration by relative error and correlation analysis. Consequently, it can be generally concluded that verification results for the peak discharge and time to peak of simulated runoff hydrographs were in good agreement with those of calibrated runoff hydrographs.

  • PDF

An analysis of runoff characteristic by using soil moisture in Sulma basin (설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석)

  • Kim, Kiyoung;Lee, Yongjun;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.615-626
    • /
    • 2019
  • Soil moisture and runoff have very close relationship. Especially the water retention capacity and drainage characteristics of the soil are determined by various factors of the soil. In this study, a total of 40 rainfall events were identified from the entire rainfall events of Sulma basin in 2016 and 2017. For each selected events, the constant-K method was used to separate direct runoff and baseflow from total flow and calculate the runoff coefficient which shows positive exponential curve with Antecedent Soil Moisture (ASM). In addition to that, the threshold of soil moisture was determined at the point where the runoff coefficient starts increasing dramatically. The threshold of soil moisture shows great correlation with runoff and depth to water table. It was founded that not only ASM but also various factors, such as Initial Soil Moisture (ISM), storage capacity of soil and precipitation, affect the results of runoff response. Furthermore, wet condition and dry condition are separated by ASM threshold and the start and peak response are analyzed. And the results show that the response under wet condition occurred more quickly than that of dry condition. In most events occurred in dry condition, factors reached peak in order of soil moisture, depth to water table and runoff. However, in wet condition, they reached peak in order of depth to water table, runoff and soil moisture. These results will help identify the interaction among factors which affect the runoff, and it will help establish the relationship between various soil conditions and runoff.

Uncertainty of future runoff projection according to SSP scenarios and hydrologic model parameters (미래 기후변화 시나리오와 수문모형 매개변수에 따른 미래 유량예측 불확실성)

  • Kim, Jin Hyuck;Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Future runoff analysis is influenced by climate change scenarios and hydrologic model parameters, with uncertainties. In this study, the uncertainty of future runoff analysis according to the shared socioeconomic pathway (SSP) scenario and hydrologic model parameters was analyzed. Among the SSP scenarios, the SSP2-4.5 and SSP5-8.5 scenarios were used, and the soil and water assessment tool (SWAT) model was used as the hydrologic model. For the parameters of the SWAT model, a total of 11 parameter were optimized to the observed runoff data using SWAT-CUP. Then, uncertainty analysis of future estimated runoff compared to the observed runoff was performed using jensen-shannon divergence (JS-D), which can calculate the difference in distribution. As a result, uncertainty of future runoff was analyzed to be larger in SSP5-8.5 than in SSP2-4.5, and larger in the far future (2061-2100) than in the near future (2021-2060). In this study, the uncertainty of future runoff using future climate data according to the parameters of the hydrologic model is as follows. Uncertainty was greatly analyzed when parameters used observed runoff data in years with low flow rates compared to average years. In addition, the uncertainty of future runoff estimation was analyzed to be greater for the parameters of the period in which the change in runoff compared to the average year was greater.

Evaluation of GLEAMS nutrient submodel to predict nutrient losses from land application of poultry litter (계분살포시 수질자료를 이용한 GLEAMS 영양물질 부모형 평가)

  • 윤광식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.484-489
    • /
    • 1998
  • The GLEAMS nutrient submodel was evaluated to predict nutrient losses in surface runoff following application of two rates (9 and 18 t/ha) of poultry litter and a recommended rate of commercial fertilizer on corn plots. Nutrient submodel was evaluated with calibrated runoff and sediment losses to the observed field data. Simulation of nitrogen transformation effects on nitrogen losses in surface runoff did not agree with field data. The model simulated higher NH$_4$-N than NO$_3$-N losses in surface runoff, while field data showed the opposite.

  • PDF

Estimation of Runoff from Sumjin Reservoir Watershed Using SSARR Model (SSARR 모형을 이용한 섬진강댐 유입량 산정)

  • Lee, Tae-Ho;Chung, Jin-Ho;Jang, Jung-Suk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.419-422
    • /
    • 2003
  • The Sumjin Reservoir watershed was simulated by the SSARR model. In order to calibrate the parameters of SSARR model, watershed was divided into three sub-basins with the basin characteristics and the observed runoff datum at estuary of dam were used. As the Results of study, there was not much of difference between the observed runoff and the simulated runoff.

  • PDF

A Study on Proposal of Appropriate Rainfall-Runoff Model With Watershed Characteristics (유역특성을 고려한 적정 강우-유출모형의 제시에 관한 연구)

  • Choi, Han-Kyu;Baek, Kyung-Won;Choi, Yong-Mook
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.379-390
    • /
    • 1999
  • The purpose of this study is to investigate the applicability of Nakayasu & SCS method and Clark method to the computation of runoff from the river basin in Soyang watershed. As the result, each runoff was conducted to compare and analyze existing established peak flow model, and to propose a pertinent model.

  • PDF

Variations of Rainfall-Runoff Characteristics with Landuse (토지이용에 따른 강우-유출 특성 변화(농지조성 및 농어촌정비))

  • 임상준;서춘석;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • The purpose of this study were to monitor rainfall and runoff data from paddy blocks and forest areas at the Balan Experimental Watershed, and to investigate the variations of runoff characteristics with different land use. Field data showed that the total runoff from paddies and forest areas are not significantly different in volume. The peak discharge from forest areas was less than that from paddies for lighter storms, but became greater for heavier storms. The results demonstrate that paddies play an important role to reduce peak discharge from heavy storms as compared to forest.

  • PDF

Object-Oriented Runoff Analysis Using DataBase (데이터베이스를 이용한 객체지향 유출해석(관개배수 \circled1))

  • 김상민;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.126-131
    • /
    • 2000
  • This paper presents a framework for developing an object-oriented system for runoff analysis. The objects include rainfall, meterorologic, watershed, reservoir, stream, DB management, and GUI. Data and method of each object were analyzed and defined. The database for runoff analysis were designed and DBMS MS-Access was chosen. The system design features and implementation are described, and an graphic user interface for flood runoff is presented

  • PDF

Runoff Pattern in Upland Soils with Various Soil Texture and Slope at Torrential Rainfall Events (집중강우시 우리나라 밭토양의 토성과 경사에 따른 물유출 양상)

  • Jung, Kang-Ho;Hur, Seung-Oh;Ha, Sang-Geon;Park, Chan-Won;Lee, Hyun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • When overland flow water is small and slow, it moves down a stream slowly and we use it as available resource. However, it could not only be good for nothing but arouse an inundation if a lot of runoff pour down to stream at a torrential rain. So it is important to know how much water to flow out and be stored in soil and on land in order to predict a flood and conserve soil and water quality. We intended to develop the prediction model of runoff in upland at a torrential rain and conducted lysimeter study in soybean cultivation and bare soil with 3 slopeness, 3 slope length and 5 soil texture from 1985 to 1991. The data of rainfall and runoff were used when daily rainfall was over 80 mm, the level of torrential rain warning. Minimum rainfall occurring runoff (MROR) was dependent on surface coverage and slope length. However soil texture and slopeness had a little influence on MROR. Runoff after MROR increased in proportion to precipitation which depended on surface coverage, soil texture and slope. Runoff ratio was larger in fine texture and bare soil than coarse soil and soybean coverage. Runoff ratio was in proportion to a square root of slope angle(radian) and reduced with slope length to converge a certain value. From these basis, we developed the prediction model following as $$Runoff(mm)=a(s^{0.5}+l^b)(Rainfall(mm)-80(1-e^{-bl}))$$ where a is a coefficient relevant soil hydraulic properties, b is a surface coverage coefficient, s is a slope angle and l is a slope length. The coefficient a was 0.5 in sandy loam and 0.6 in clay, and b was 0.06 in bare soil and 0.5 in soybean cultivation.