• Title/Summary/Keyword: RUNNING SHOES

Search Result 56, Processing Time 0.039 seconds

An evaluation on a wearing test for EMU′s panto shoes (전동차용 집전장치 습판체 마모시험 평가)

  • 정종덕;한석윤;김원경;이수길;홍용기;정래훈
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • This paper describes the result of wearing test on the Sangju test track. The purpose of the test is to evaluate an amount of wearing for EMU's panto shoes. Panto shoes are affected in wearing by environment of owing to expose the vehicle. Especially, the rainy season, they are found easy to get an increase in wearing of panto shoes. To evaluate an amount of wearing, we ca]lied out running test for 5 months under the ground line conditions.

  • PDF

The Analysis of Foot Pressure and Lap Time for the Development of Korean Bobsleigh Shoes (한국형 봅슬레이화 개발을 위한 구간 시간과 족저압력 분석)

  • Park, Jong-Jin;Kim, Kyung-Hun;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.465-474
    • /
    • 2015
  • Objective : A study and development of Korean Bobsleigh athletes's shoe which considers their physical condition has yet to be completed. So this study examines the effects of running shoes used by athletes based on plantar pressure and sprint time in order to provide raw data for the development of bobsleigh shoes suitable for Koreans. Method : The study selected seven bobsleigh athletes as subjects and selected three pairs of spiked running shoes from three companies, which will be referred to as Company N (Type A), Company A (Type B), and Company M (Type C). To analyze sprint time and plantar pressure for each shoe, the subject of the study were instructed to wear the selected shoes and to drag a sled at maximum sprint for 15 meters for 15 meters for in each condition that would be in real bobsleigh competitions. Results : The average sprint intervals for each athlete in each pair of shoes revealed Type C produce the fastest sprint in the order of Type C < Type A< Type B. Shoe Type C also had the largest contact area in order of Type C > Type B > Type A (p<.01). None of the three shoe types seem to yield a distinct advantage in terms of maximum average pressure or maximum pressure. Conclusion : In the future, functional analysis should be carried out by comparing the material properties, hardness, and toe spring of shoes based on the Type C shoe from Company M in order to develop bobsleigh shoes suitable for Koreans.

The Effect of Differential Medial and Lateral Midsole Hardness on Rearfoot Movement (운동화 후족의 내외측 경도차에 따른 후족 제어의 효과)

  • Bu, Jin-Hu;Lee, Dong-Chun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2001
  • Rearfoot control can be defined as the relative ability of a shoe to limit the amount of subtalar joint pronation immediately following footstrike. A normal amount of pronation provides a means of decreasing peak forces experienced by the leg, but excessive pronation of the foot can be arised its injures. The purpose of this study is to compare amount of pronation according to a difference between medial and later hardness of shoe midsole for better design of running shops. The experiment is examined for 7 running shoes. 8 males. to measure the Achilles tendon angle and rearfoot angle using high speed camera. The results is conducted that the changes of Achilles tendon angle significantly differ at each test shoe with increased running speed. And, a difference between medial and lateral hardness of midsole affects rearfoot motion of runner. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral.

  • PDF

Finite Element Analysis for the Landing Impact Evaluation of Court Sport Shoes (코트 스포츠화의 착지충격 평가를 위한 유한요소 해석)

  • Kim, Seong-Ho;Cho, Jin-Rae;Ryu, Sung-Heon;Choi, Joo-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.438-443
    • /
    • 2004
  • Court sport shoes is consisted of several functional parts such as soles, upper and midfoot reinforcements. Currently, intensive research for court sport shoes considering functional parts is in progress world widely, but the shoes design relies only on the view point of kinesilogy and biomechanics until now. Thus, more scientific and reliable evaluation of shoes characteristics is definitely required. In this paper, we evaluate the landing impact of court sport shoes by using finite element method. We construct a shoes-leg coupled FEM model which can simulate effectively impact in running mode. From the numerical analysis results, the designer can establish the advanced design concepts and build up the detailed design standard for the specific court sport shoes under consideration.

  • PDF

Changes of Balance Ability according to the Stability of Shoes in Elderly Woman and Female University Student (신발의 안정성에 따른 여성노인과 여대생의 균형능력 변화)

  • Song, Yu-jin;Min, Gyeong-hun;Jeong, Deok-yong;Yook, Seon-young;Choi, Yun-young;Bae, Kyung-yoon;Cho, Ki Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.3
    • /
    • pp.70-75
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the changes of static and dynamic balance control ability according to the stability of shoes in elderly woman and female university student. Design: Cross-sectional study. Methods: Six elderly women and seven female university students were recruited for this study. The subject's static and dynamic balance were evaluated while wearing two different types of shoes (comfortable running shoe and masai walking shoe). The BT4 system was used to measure the static (postural sway area and velocity) and dynamic balance (limit of stability on forward, backward and left and right side). The measurement of static and dynamic balance control ability was performed in standing posture wearing comfortable running shoes and masai walking shoes. Results: In the static balance control ability, both female university students and elderly women showed significant increase in postural sway area and velocity when wearing unstable shoes (p<0.05) In addition, in the dynamic balance control ability, both female university students and elderly women showed significant decrease in limit of stability on forward and backward when wearing unstable shoes (p<0.05). Conclusion: In selecting shoes for the elderly, the stability of shoe should be considered for prevention of falls.

Biomechanical Comparison of HG(hard ground) Soccer Footwear and SG(soft ground) Soccer Footwear (Hard Ground용 축구화와 Soft Ground용 축구화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2006
  • The Purpose of this study was to compare the biomechanical difference of two soccer footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. The result of this study can be summarized after testing the two types of soccer footwear with comparative transforming heel angles and also with a pressure distribution in running. When a player's foot first touched the ground, the average difference of in/eversion was between 1.2 and 3.1 degrees for the two soccer shoes. In regards to maximum inversion and eversion of foot, maximum tibial rotation, and maximum and total movement of foot, the condition of barefoot and the two soccer shoes showed a small difference from 1.5 to 3.5 degrees and the difference among the subjects of study wasn't constant. In regards to maximum velocity of inversion and eversion running in one's bare feet showed much lower inversion velocity in comparison to putting on two types of soccer shoes and comparison of the average. Among some of the subjects, after putting on the two types of soccer shoes exceeded $97^{\circ}/s$ in maximum velocity of eversion. In the maximum braking impulse(t=2774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running.

Biomechanical Analysis of Trail Running Shoes Applied to Korean Shoe-Lasts (한국인 족형을 적용한 트레일 러닝화의 생체역학적 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;An, Chang-Shin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2010
  • The purpose of this study was to analyze biomechanical factors of trail running shoes applied to korean shoe-lasts. 10 healthy male subjects with an average age of 37.2 years(SD=8.28), weight of 69.6 kg(SD=10.56) and a height of 171 cm(SD=4.93) were recruited for this study. Ten males walked on a treadmill wearing four different shoes. Foot pressure data was collected using a Pedar-X mobile system(Novel Gmbh., Germany) operating at the 1000 Hz. Surface EMG signals for tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris were acquired at 1000 Hz using Noraxon TeleMyo DTS system(Noraxon Inc., USA). Foot pressure and leg muscle fatigue were measured and calculated during walking. The results are as follows: After walking 60 minutes, Type A showed a lower MPF. MPF values were significantly different from each muscle(p<.05). Therefore, Type A shoe might decrease muscle fatigue in the legs while walking. In addition, Type It showed that Type A shoe has the highest contact area and the lowest maximum pressure. As a result of the analysis, Trail running shoes will use a new design to reduce muscle fatigue and are expected to increase comfort and fitting.

Influence of the Midsole Hardness on Shock Absorption along the Human Body during Running (달리기 중 신발 중저의 경도가 인체를 따라 흡수되는 충격에 미치는 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate influence of midsole hardness on shock absorption along the human body during running. Thirty two expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. Using accelerometers we measured the shock absorption from shoe heel to cervical vertebral column. In conclusion, at the shoe heel, shock was the greatest with the hard midsole. However because most shock was absorbed between shoe heel and the knee, notable influence of midsole was not detected upper knee. At shoe heel, regardless of midsole hardness, the shock of younger female was the greatest. The authors expect to apply this result for providing a guideline for utilizing proper midsole hardness for manufacturing age and gender-specific shoe.

Evaluation of Landing Impact Characteristics of Sport Shoes in Running by finite Element Analysis (유한요소 해석을 통한 스포츠화의 런닝 시 착지충격 특성평가)

  • Kim, Sung-Ho;Cho, Jin-Rae;Lee, Shi-Bok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • Recently, intensive research efforts are world-widely forced on the development of sport shoes improving both the injury protection and the playing performance by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the reliable evaluation of the dynamic responses of sport shoes and human foot, particularly the landing impact characteristics. It is because the landing impact force is a main source of unexpected injuries and influences the playing performance in court sport activities. This paper addresses the application of finite element method to the evaluation of landing impact characteristics of barefoot and several representative court sport shoes in running. In order to accurately reflect the coupling effect between human foot and shoes accurately, we construct a fully coupled three-diemensional foot-shoe FEM model which does not rely on the independent experimental data any more. Through the numerical simulation, we assessed the reliability of the numerical FEM model by comparing with the experimental results and investigated the landing impact characteristics, such as GRF, MIF, acceleration and frequency responses, of representative court sport shoes.

Evaluation of Landing Impact Force of Court Sport Shoes at Running by Finite Element Analysis (유한요소 해석을 통한 코트 스포츠화의 런닝시 충격력 평가)

  • Kim, Seong-Ho;Cho, Jin-Rae;Ryu, Sung-Heon;Choi, Joo-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.498-503
    • /
    • 2004
  • A fundamental function of court sport shoes has been considered as the protection of human feet from unexpected injuries. But, recently its role for improving the playing competency is being regarded as a more important function. In connection with this situation, intensive efforts are being world-widely forced on the development of court sport shoes proving the excellent playing competency, by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the shoes design based upon the reliable evaluation of shoes functional parts. This paper addresses the application of finite element method to the evaluation of landing impact force of court sport shoes. In order to reflect the coupling effect between leg and shoes accurately and effectively, we construct a fully coupled shoes-leg FEM model which does not rely on the independent experimental data any more. Through the numerical experiments, we assess the reliability of the coupled FEM model by comparing with the experimental results and investigate the landing impact characteristics of court sport shoes.

  • PDF