• Title/Summary/Keyword: RUL

Search Result 108, Processing Time 0.026 seconds

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Estimation of Remaining Useful Life for Bearing of Wind Turbine based on Classification of Trend (상태지수의 경향성 분류에 기반한 풍력발전기 베어링 잔여수명 추정)

  • Yun-Ho Seo;SangRyul Kim;Pyung-Sik Ma;Jung-Han Woo;Dong-Joon Kim
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.34-42
    • /
    • 2023
  • The reduction of operation and maintenance (O&M) costs is a critical factor in determining the competitiveness of wind energy. Predictive maintenance based on the estimation of remaining useful life (RUL) is a key technology to reduce logistic costs and increase the availability of wind turbines. Although a mechanical component usually has sudden changes during operation, most RUL estimation methods use the trend of a state index over the whole operation period. Therefore, overestimation of RUL causes confusion in O&M plans and reduces the effect of predictive maintenance. In this paper, two RUL estimation methods (load based and data driven) are proposed for the bearings of a wind turbine with the results of trend classification, which differentiates constant and increasing states of the state index. The proposed estimation method is applied to a bearing degradation test, which shows a conservative estimation of RUL.

Internal parameter comparative analysis for the RUL of high-power lithium-ion battery (고출력 리튬이온 배터리의 RUL을 위한 내부 파라미터 변화 비교분석)

  • Kim, Y.S;kim, J.H;Lee, P.Y;Jang, M.H
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.311-312
    • /
    • 2016
  • 본 논문에서는 사이즈가 다른 고출력 원통형 리튬이온 배터리의 Remaining Useful Life(RUL)을 방전용량 기반으로 전기적 특성분석을 실시하였다. 우선, 배터리의 충/방전이 계속될 시 용량이 어떻게 변화하는지 실험해보았으며, 만충 전압(Fully Charged)에서 만방 전압(Fully Discharged) 까지의 각각의 State-Of-Charge(SOC)에서 Hybrid Pulse Power Characterization (HPPC) Test를 이용해 충전 저항과 방전 저항을 구하여, 용량과 저항의 관계를 파악하였으며, 배터리 RUL을 알기 위한 기본 정보를 확보했다.

  • PDF

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

Migrating Lobar Atelectasis of the Right Lung: Radiologic Findings in Six Patients

  • Tae Sung Kim;Kyung Soo Lee;Jung Hwa Hwang;In Wook Choo;Jae Hoon Lim
    • Korean Journal of Radiology
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • Objective: To describe the radiologic findings of migrating lobar atelectasis of the right lung. Materials and Methods: Chest radiographs (n = 6) and CT scans (n = 5) of six patients with migrating lobar atelectasis of the right lung were analyzed retrospectively. The underlying diseases associated with lobar atelectasis were bronchogenic carcinoma (n = 4), bronchial tuberculosis (n = 1), and tracheobronchial amyloidosis (n = 1). Results: Atelectasis involved the right upper lobe (RUL) (n = 3) and both the RUL and right middle lobe (RML) (n = 3). On supine anteroposterior radiographs (n = 5) and on an erect posteroanterior radiograph (n = 1), the atelectatic lobe(s) occupied the right upper lung zone, with a wedge shape abutting onto the right mediastinal border. On erect posteroanterior radiographs (n = 6), the heavy atelectatic lobe(s) migrated downward, forming a peri- or infrahilar area of increased opacity and obscuring the right cardiac margin. Erect lateral radiographs (n = 4) showed inferior shift of the anterosuperiorly located atelectatic lobe(s) to the anteroinferior portion of the hemithorax. Conclusion: Atelectatic lobe(s) can move within the hemithorax according to changes in a patient s position. This process involves the RUL or both the RUL and RML.

  • PDF

Prediction of Remaining Useful Life (RUL) of Electronic Components in the POSAFE-Q PLC Platform under NPP Dynamic Stress Conditions

  • Inseok Jang;Chang Hwoi Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1863-1873
    • /
    • 2024
  • In the Korean domestic nuclear industry, to analyze the reliability of instrumentation and control (I&C) systems, the failure rates of the electronic components constituting the I&C systems are predicted based on the MIL-HDBK-217F standard titled 'Reliability Prediction of Electronic Equipment'. Based on these predicted failure rates, the mean time to failure of the I&C systems is calculated to determine the replacement period of the I&C systems. However, this conventional approach to the prediction of electronic component failure rates assumes that factors affecting the failure rates such as ambient temperature and operating voltage are static constants. In this regard, the objective of this study is to propose a prediction method for the remaining useful life (RUL) of electronic components considering mean time to failure calculations reflecting dynamic environments, such as changes in ambient temperature and operating voltage. Results of this study show that the RUL of electronic components can be estimated depending on time-varying temperature and electrical stress, implying that the RUL of electronic components can be predicted under dynamic stress conditions.

Remaining Useful Life Estimation based on Noise Injection and a Kalman Filter Ensemble of modified Bagging Predictors

  • Hung-Cuong Trinh;Van-Huy Pham;Anh H. Vo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3242-3265
    • /
    • 2023
  • Ensuring reliability of a machinery system involve the prediction of remaining useful life (RUL). In most RUL prediction approaches, noise is always considered for removal. Nevertheless, noise could be properly utilized to enhance the prediction capabilities. In this paper, we proposed a novel RUL prediction approach based on noise injection and a Kalman filter ensemble of modified bagging predictors. Firstly, we proposed a new method to insert Gaussian noises into both observation and feature spaces of an original training dataset, named GN-DAFC. Secondly, we developed a modified bagging method based on Kalman filter averaging, named KBAG. Then, we developed a new ensemble method which is a Kalman filter ensemble of KBAGs, named DKBAG. Finally, we proposed a novel RUL prediction approach GN-DAFC-DKBAG in which the optimal noise-injected training dataset was determined by a GN-DAFC-based searching strategy and then inputted to a DKBAG model. Our approach is validated on the NASA C-MAPSS dataset of aero-engines. Experimental results show that our approach achieves significantly better performance than a traditional Kalman filter ensemble of single learning models (KESLM) and the original DKBAG approaches. We also found that the optimal noise-injected data could improve the prediction performance of both KESLM and DKBAG. We further compare our approach with two advanced ensemble approaches, and the results indicate that the former also has better performance than the latters. Thus, our approach of combining optimal noise injection and DKBAG provides an effective solution for RUL estimation of machinery systems.

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.