• Title/Summary/Keyword: RTS/CTS

Search Result 74, Processing Time 0.027 seconds

A MAC Protocol based on Priority for controlling Biomimetic Remotely Operated Underwater Vehicles (생체모방형 ROV 제어를 위한 우선순위 기반의 MAC 프로토콜)

  • Lee, Jin-Young;Yun, Nam-Yeol;Shin, Seung-Won;Park, Soo-Hyun;Kim, Chang-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.15-16
    • /
    • 2012
  • 본 논문에서는 우선순위 기반의 RTS/CTS 통신 기법을 적용하여 생체모방형 ROV 를 제어하기 위한 수중 MAC 프로토콜을 제안하였다. MANET 기반의 하천 수질 환경 감시 시스템이 효율적으로 운용되기 위한 수중 MAC 프로토콜이 지원됨으로써 이동성이 강조되는 생체모방형 ROV 제어를 위한 실시간성을 보장할 수 있다.

A Control Frame Design for Delay Decrease (Delay 감소를 위한 제어프레임 디자인)

  • Han, Kyoung-heon;Lee, Sang-duck;Kim, Chul-won;Han, Seung-jo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.445-446
    • /
    • 2009
  • IEEE 802.11 환경은 RTS/CTS(Request To Send/Clear To Send)을 지원한다. TS/CTS의 사용하면 Hidden Node Problem을 해결할 수 있지만 같은 셀안에 다른 노드를 대기상태로 만드는 False Node Problem이 발생하여 전송률을 감소시킨다. 따라서 본 논문에서는 체크포인트 방식을 사용하여 매체점유시간을 줄이는 제어프레임을 설계하고자 한다. 설계한 제어프레임의 OPNET을 사용하여 시뮬레이션하며, 기존의 제어프레임과 제안하는 제어프레임의 Delay를 비교함으로써 무선네트워크 환경에서 전송 효율을 비교 분석한다.

Effect of Interference in CSMA/CA Based MAC Protocol for Underwater Network (CSMA/CA 기반 수중 통신망에서 간섭의 영향 연구)

  • Song, Min-je;Cho, Ho-shin;Jang, Youn-seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1631-1636
    • /
    • 2015
  • With the advance of wireless communication technology in terrestrial area, underwater communication is also evolving very fast from a simple point-to-point transmission to an elaborate networked communications. Underwater acoustic channel has quite different features comparing with the terrestrial radio channel in terms of propagation delay, Doppler shift, multipath, and path loss. Thus, existing technologies developed for terrestrial communication might not work properly in underwater channel. Especially medium access control (MAC) protocols which highly depend on propagation phenomenon should be newly designed for underwater network. CSMA/CA has drawn lots of attention as a candidate of underwater MAC protocol, since it is able to resolve a packet collision and the hidden node problem. However, a received signal could be degraded by the interferences from the nodes locating outside the receiver's propagation radius. In this paper, we study the effects of interference on the CSMA/CA based underwater network. We derived the SNR with the interference using the sonar equation and analyzed the degradation of the RTS/CTS effects. These results are compared with the terrestrial results to understand the differences. Finally we summarized the design considerations in CSMA/CA based underwater network.

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs (CARA: IEEE 802.11 무선랜에서 충돌을 인지한 적응적 전송속도 조절기법)

  • Kim, Jong-Seok;Kim, Seong-Kwan;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.154-167
    • /
    • 2006
  • Today's IEEE 802.11 WLANs(Wireless LANs) provide multiple transmission rates so that different rates can be exploited in an adaptive manner depending on the underlying channel condition in order to maximize the system performance. Many rate adaptation schemes have been proposed so far while most(if not all) of the commercial devices implement a simple open-loop rate adaptation scheme(i.e., without feedback from the receiver), called ARF(Automatic Rate Fallback) due to its simplicity. A key problem with such open-loop rate adaptation schemes is that they do not consider the collision effect, and hence, malfunction severely when many transmission failures are due to collisions. In this paper, we propose a novel rate-adaptation scheme, called CARA(Collision-Aware Rate Adaptation). The key idea of CARA is that the transmitter station combines adaptively the Request-to-Send/Clear-to-Send(RTS/CTS) exchange with the Clear Channel Assessment(CCA) functionality to differentiate frame collisions from frame transmission failures cause by channel errors. Therefore, compared with other open-loop rate adaptation schemes, CATA is more likely to make the correct rate adaptation decisions. Through extensive simulation runs, we evaluate our proposed scheme to show that our scheme yields significantly higher throughput performance than the existing schemes in both static and time-varying fading channel environments.

Multi channel reservation scheme for underwater sensor network (수중 센서 네트워크에서 다중 채널 예약방법)

  • Lee, Dong-Won;Kim, Sun-Myeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.336-339
    • /
    • 2011
  • In the RTLS(Real Time Location Based System), in case of existing a number of moving target, extremely complecated data flow is can be occurred. In the network where single gateway exists, various data which was collected from sensor node is transmitted along the simple route as time goes by. In case of multi-gateway configuration, the collected data is transmitted through diverse routes rather than simple route. This kind of data causes jams on nodes and this brings down the performance of the network. Different from existing studies, in this thesis, MAC (Media Access Control) protocol which minimizes data collision between nodes and guarantees QoS(Quality of Service) is suggested, in order to communicate efficiently in multi-gateway underwater sensor network environment. In the suggested protocol, source node which wants to transmit data makes a channel reservation to a number of destination node using a RTS packet. Source node reserves a channel without collision, by scheduling CTS response time using expected delay information from neighbor nodes. Once the reservation is made, source node transmit data packet without collision. This protocol analyzes/estimates the performance compared to a method provided from existing studies via simulation. As a results of the analysis, it was comfirmed that the suggested method has better performance, such as efficiency and delay.

  • PDF

Mutual Exclusion based Localization Technique in Mobile Wireless Sensor Networks (이동 무선 센서 네트워크에서 상호배제 기반 위치인식 기법)

  • Lee, Joa-Hyoung;Lim, Dong-Sun;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1493-1504
    • /
    • 2010
  • The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose LME, the localization technique for multiple mobile nodes in mobile wireless sensor networks. In LME, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use CTS packet type for localization initiation by mobile node and RTS packet type for localization grant by anchor node. NTS packet type is uevento reject localization by anchor node for interference avoidance.nghe experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and LME provides efficient localization.

Underwater Experiment on CSMA/CA Protocol Using Commercial Modems (상용 모뎀 제어를 통한 수중 CSMA/CA 프로토콜 시험)

  • Cho, Junho;Lee, Sang-Kug;Shin, Jungchae;Lee, Tae-Jin;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.457-465
    • /
    • 2014
  • This paper introduces a test bed for communication protocol schemes of underwater acoustic sensor network, and also shows experimental results obtained from the test bed. As a testing protocol, carrier sense multiple access/collision avoidance (CSMA/CA) is evaluated on underwater acoustic channel. A sensor node is equipped with a DSP control board of ATmega2560 and a commercial underwater modem produced by Benthos. The control board not only manipulates a GPS signal to acquire the information of location and time, but also controls the underwater modem to operate according to the procedure designed for a given testing protocol. Whenever any event takes place such as exchanging control/data packets between underwater modems and acquiring location and timing information, each sensor node reports them through radio frequency (RF) air interface to a central station located on the ground. The four kinds of packets for CSMA/CA, RTS(Request To Send), CTS(Clear to Send), DATA, ACK(Acknowledgement) are designed according to the underwater communication environment and are analyzed through the lake experiment from the point of feasibility of CSMA/CA in underwater acoustic communications.

A Buffer Management Scheme for Multi-hop Traffic in IEEE 802.11 based Mesh Networks (IEEE 802.11 기반 메쉬 네트워크에서 다중 홉 트래픽을 위한 버퍼 관리 방식)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.455-462
    • /
    • 2009
  • In this paper, we propose a buffer management scheme for decreasing the packet loss due to buffer overflow and improving the packet fairness between nodes in IEEE 802.11 based multi-hop mesh networks. In the proposed scheme, each mesh router that is an intermediate node receives fairly packet sent from neighboring mesh routers and mobile nodes, and it improves the reception ratio of multi-hop traffic of neighboring mesh routers. Therefore, the proposed scheme can reduce transmission delay and energy consumption. In order to improving the packet loss and the packet fairness, the proposed scheme uses the modified RTS/CTS under the IEEE 802.11 MAC protocol and reduces the packet loss by recognizing the packet size to send to the destination in advance. By using the simulation, we evaluated the proposed scheme in terms of the packet loss ratio and the number of received packet in each mesh router, and compare it to a traditional scheme.

Power Controlled Dual-channel UC Protocol for Mobile Ad Hoc Networks (Ad hoc 네트워크에서 전력 제어 기법을 사용한 Dual-Channel MAC 프로토콜)

  • Kang, Chang-Nam;Han, Do-Hyung;Lee, Eun-Ju;Jaw, Jeong-Woo;Lim, Jea-Yun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2007.02a
    • /
    • pp.101-104
    • /
    • 2007
  • Ad hoc 네트워크는 기반구조가 없는 무선네트워크이다. Ad hoc 네트워크는 재난지역, 군사지역, 홈 네트워킹 서비스, 텔레매틱스 서비스 같은 곳에서 응용될 수 있다. 최근Ad hoc 네트워크의 처리량을 향상시키기 위해 방향성 안테나를 사용하거나 이중채널을 사용하는MAC프로토콜이 제안되고 있다. DUBMAC프로토콜은 이중채널에 방향성 안테나를 사용하여 처리량 성능을 향상시킨 프로토콜이다. 본 논문에서는 DUDMAC프로토콜에 전력 제어 기법을 적용하여 네트워크의 처리량을 향상시키는 MAC 프로토콜을 제안한다. 제안하는 MAC 프로토콜은 새로운 블로킹 알고리즘을 사용하여 공간 재사용을 향상시킨다. 제안하는 블로킹 알고리즘은 RTS 또는 CTS 수신 시 블로킹 테이블에 저장된 수신세기를 사용하여 기존의 DUDMAC의 블로킹 영역을 FULL_BLOCKING 영역과 SEMI_BLOCKING 영역으로 구분하여 성능을 개선한다. 제안하는 MAC 프로토콜의 처리량 성능은 퀄넷 시뮬레이터 버전 3.8을 사용하여 확인하였다.

  • PDF