• Title/Summary/Keyword: RT-qPCR assay

검색결과 122건 처리시간 0.028초

Prevalence of feline calicivirus in Korean cats determined by an improved real-time RT-PCR assay

  • Ji-Su Baek;Jong-Min Kim;Hye-Ryung Kim;Yeun-Kyung Shin;Oh-Kyu Kwon;Hae-Eun Kang;Choi-Kyu Park
    • 한국동물위생학회지
    • /
    • 제46권2호
    • /
    • pp.123-135
    • /
    • 2023
  • Feline calicivirus (FCV) is considered the main viral pathogen of feline upper respiratory tract disease (URTD). The frequent mutations of field FCV strains result in the poor diagnostic sensitivity of previously developed molecular diagnostic assays. In this study, a more sensitive real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for broad detection of currently circulating FCVs and comparatively evaluated the diagnostic performance with previously developed qRT-PCR assay using clinical samples collected from Korean cat populations. The developed qRT-PCR assay specifically amplified the FCV p30 gene with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 2%. Based on the clinical evaluation using 94 clinical samples obtained from URTD-suspected cats, the detection rate of FCV by the developed qRT-PCR assay was 47.9%, which was higher than that of the previous qRT-PCR assay (43.6%). The prevalence of FCV determined by the new qRT-PCR assay in this study was much higher than those of previous Korean studies determined by conventional RT-PCR assays. Due to the high sensitivity, specificity, and accuracy, the new qRT-PCR assay developed in this study will serve as a promising tool for etiological and epidemiological studies of FCV circulating in Korea. Furthermore, the prevalence data obtained in this study will contribute to expanding knowledge about the epidemiology of FCV in Korea.

Development and Application of Reverse Transcription Nanoplate-Based Digital PCR Assay for Sensitive and Accurate Detection of Rice Black-Streaked Dwarf Virus in Cereal Crops

  • Hyo-Jeong Lee;Hae-Jun Kim;Sang-Min Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • 제40권4호
    • /
    • pp.408-413
    • /
    • 2024
  • The emergence of rice black-streaked dwarf virus (RBSDV) poses a significant threat to global cereal crop cultivation, necessitating the urgent development of reliable detection and quantification techniques. This study introduces a reliable approach for the precise and sensitive quantification of the RBSDV in cereal crop samples, employing a reverse transcription digital polymerase chain reaction (RT-dPCR) assay. We assessed the specificity and sensitivity of the RT-dPCR assay proposed for precise RBSDV detection and quantification. Our findings demonstrate that RT-dPCR was specific for detection of RBSDV, with no cross-reactivity observed with other viruses infecting cereal crops. The RT-dPCR sensitivity was over 10 times that of RT-quantitative PCR (RT-qPCR). The detection limit of RT-dPCR was 0.096 copies/㎕. In addition, evaluation of RT-dPCR assay with field samples was conducted on 60 different cereal crop samples revealed that RT-dPCR (45/60) exhibited superior accuracy compared with RT-qPCR (23/60). In this study, we present a specific and accurate RT-dPCR assay for the detection and quantification of RBSDV.

Evaluation of Various Real-Time Reverse Transcription Quantitative PCR Assays for Norovirus Detection

  • Yoo, Ju Eun;Lee, Cheonghoon;Park, SungJun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.816-824
    • /
    • 2017
  • Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for the sensitive and accurate detection of these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays, and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assays A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, and sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A ZEN internal quencher, which decreases nonspecific fluorescence during the PCR, was added to Assay D's probe, which further improved the assay performance. This study compared several detection assays for noroviruses, and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

Development and Assessment of New RT-qPCR Assay for Detection of HIV-1 Subtypes

  • Lim, Kwanhun;Park, Min;Lee, Min Ho;Woo, Hyun Jun;Kim, Jong-Bae
    • 대한의생명과학회지
    • /
    • 제22권3호
    • /
    • pp.83-97
    • /
    • 2016
  • The measurement of viral load in HIV-1 infected patients is essential for the establishment of a therapeutic strategy. Several commercial assays have shown shortcomings in quantifying rare genotypes of HIV-1 such as minor groups of N and O. In this study, the HIV-1 RT-qPCR assay was developed. The primers and probe of HIV-1 were designed to target the pol gene and to increase the detection efficiency of various subtypes including group N and O. The HIV-1 quantitative RT-qPCR assay was assessed for its analytical performance and clinical evaluation. The LoD was determined to 33.9 IU/ml. The LoD of several subtypes including A, C, D, CRF_01AE, F, CRF_02AG, G and H, were determined to less than 40 IU/ml. The HIV-1 quantitative RT-qPCR assay was evaluated using the China National Reference Panel of HIV-1 RNA to determine the analytical performance. The results were all within the acceptable range. The clinical evaluation was performed at Hunan CDC in China. The clinical evaluation results were compared with those of the China domestic commercial kit. A significant correlation (fresh samples; $R^2=0.84$, P<0.001, frozen samples; $R^2=0.76$, P<0.001) between the two systems was observed for 64 fresh samples and 76 frozen samples with viral loads, and the Bland-Altman plot showed good agreement (98.4%, 96.1%, respectively). In conclusion, the HIV-1 quantitative RT-qPCR assay had comparable analytical performance with several commercial kits. The study provides basic data for the research of HIV-1 diagnosis and the development of P < HIV-1 molecular diagnostic assay.

A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of 'Candidatus Liberibacter asiaticus' in Citrus

  • Tirumalareddy Danda;Jong-Won Park;Kimberly L. Timmons;Mamoudou Setamou;Eliezer S. Louzada;Madhurababu Kunta
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.309-318
    • /
    • 2023
  • Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, 'Candidatus Liberibacter asiaticus' (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, Diaphorina citri Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy nrdB gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the nrdB target as low as ~2.6 Log10 copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

Comparison of clinical diagnostic performance between commercial RRT-LAMP and RT-qPCR assays for SARS-CoV-2 detection

  • Kim, Hye-Ryung;Park, Jonghyun;Han, Hyung-Soo;Kim, Yu-Kyung;Jeon, Hyo-Sung;Park, Seung-Chun;Park, Choi-Kyu
    • 한국동물위생학회지
    • /
    • 제44권3호
    • /
    • pp.163-168
    • /
    • 2021
  • The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in isolating infected patients and preventing further viral transmission. In this study, we evaluated the clinical diagnostic performances of a commercial real-time reverse transcription loop-mediated isothermal amplification (RRT-LAMP) assay (Isopollo® COVID-2 assay, M-monitor, Daegu, Korea) using eighty COVID-19 suspected clinical samples and compared these with the results of a commercial real-time reverse transcription polymerase chain reaction (RT-qPCR) assay (AllplexTM 2019-nCoV rRT-QPCR Assay, SeeGene, Seoul, Korea). The results of the RRT-LAMP assay targeting the N or RdRp gene of SARS-CoV-2 showed perfect agreement with the RT-qPCR assay results in terms of detection. Furthermore, the RRT-LAMP assay was completed in just within a 20-min reaction time, which is significantly faster than about the 2 h currently required for the RT-qPCR assay, thus enabling prompt decision making regarding the isolation of infected patients. The RRT-LAMP assay will be a valuable tool for rapid, sensitive, and specific detection of SARS-CoV-2 in human or unexpected animal clinical cases.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.

구제역바이러스 신속진단을 위한 pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) 진단법 (Pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of foot-and-mouth disease virus)

  • 임다래;박유리;박선영;김혜령;박민지;구복경;나진주;유소윤;위성환;전효성;김지정;전보영;이형우;박최규
    • 한국동물위생학회지
    • /
    • 제41권1호
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, we developed a sensitive and specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid visual detection of foot-and-mouth disease virus (FMDV) circulated in Korea. The RT-LAMP was completed in 40 min at $62^{\circ}C$ and the results of the assay were directly detected by naked eye without any detection process. The assay specifically amplified all 7 serotypes of FMDV RNAs but not amplified other viral and cellular nucleic acids. The sensitivity of the RT-LAMP was $10^2$, $10^3$ and $10^3TCID_{50}/mL$ for serotype O, A and Asia 1 FMDV, respectively, which was comparable to conventional reverse transcription polymerase chain reaction (RT-PCR) and relatively lower than that of real time quantitative RT-PCR (qRT-PCR). Clinical evaluation of the RT-LAMP using different serotypes of Korean and foreign FMDV strains showed a 100% (35/35) agreement with the results of the RT-PCR and qRT-PCR. These results indicated that RT-LAMP assay developed in this study could be a valuable diagnostic method for FMDV monitoring and surveillance.

Stem-loop RT-qPCR 분석법을 이용한 siRNA 치료제의 생체시료 분석법 검증 및 약물 동태학적 분석 (Validation of Stem-loop RT-qPCR Method on the Pharmacokinetic Analysis of siRNA Therapeutics)

  • 김혜정;김택민;김홍중;정헌순;이승호
    • 생명과학회지
    • /
    • 제29권6호
    • /
    • pp.653-661
    • /
    • 2019
  • 본 연구는 siRNA 기반 치료제등의 핵산치료제 개발에 있어서 필수적인 약물의 생체내 흡수, 분포, 대사, 배설에 대한 동태의 확인을 위해 stem-loop RT-qPCR 법을 이용하여 보다 더 정확한 시험법을 확립하고자 하였다. siRNA에 특이적인 primer와 probe를 선별하여 siRNA 정량검출 시험법을 최적화하였다. siRNA 표준시료를 이용하여 최적화된 시험법을 적용하였을 때 siRNA 표준시료에 대한 Cp 값(y)간의 선형분석 결과, 기울기 평균 -3.3, 결정계수 $R^2$>0.99으로 확인되어 siRNA 표준시료와 Cp 값 간의 회귀성이 매우 높아 정량 분석이 가능한 시험법임을 확인하였고, 같은 표준시료를 이용한 stem-loop RT-qPCR의 검출한계(LOD)는 10 fM, 최소정량한계(LLOQ)는 100 fM이었다. 확립된 시험법의 신뢰성을 확인하기 위해 시험자를 다르게 하고, 시험법을 3회 반복하여 각각 진행한 결과, siRNA 표준시료에 대한 Cp 값(y)간의 선형분석 결과 기울기와 결정계수 $R^2$의 재현성(slope ${\pm}-3.2$, 결정계수 $R^2$>0.99)을 확인하였고, 표준 곡선으로부터 환산된 siRNA 표준시료의 회수율(recovery ${\pm}20%$)과 완건성이 우수함을 확인하였다. 확립된 stem-loop RT-qPCR을 생체내 존재하는 약물 검증에 적용할 수 있는지 확인하기 위하여 시험동물에 siRNA를 주입 후 시간별 혈액을 채취하여 확립된 시험법으로 시험을 진행하였고 약물 동태학적 분석을 통해 siRNA치료제의 혈액내의 안정성을 확인하였다. 따라서 본연구에서 개발된 stem-loop RT-qPCR 분석법은 정확성, 정밀성 및 민감도가 높은 분석법으로 핵산치료제 개발 연구의 다양한 생체시료 분석 연구에 적용할 수 있을 것으로 기대한다.

Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets

  • Park, Changwoo;Lee, Jina;Hassan, Zohaib ul;Ku, Keun Bon;Kim, Seong-Jun;Kim, Hong Gi;Park, Edmond Changkyun;Park, Gun-Soo;Park, Daeui;Baek, Seung-Hwa;Park, Dongju;Lee, Jihye;Jeon, Sangeun;Kim, Seungtaek;Lee, Chang-Seop;Yoo, Hee Min;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.358-367
    • /
    • 2021
  • The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.