DOI QR코드

DOI QR Code

A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of 'Candidatus Liberibacter asiaticus' in Citrus

  • Tirumalareddy Danda (Texas A&M University-Kingsville Citrus Center) ;
  • Jong-Won Park (Texas A&M University-Kingsville Citrus Center) ;
  • Kimberly L. Timmons (Texas A&M University-Kingsville Citrus Center) ;
  • Mamoudou Setamou (Texas A&M University-Kingsville Citrus Center) ;
  • Eliezer S. Louzada (Texas A&M University-Kingsville Citrus Center) ;
  • Madhurababu Kunta (Texas A&M University-Kingsville Citrus Center)
  • Received : 2023.02.14
  • Accepted : 2023.06.09
  • Published : 2023.08.01

Abstract

Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, 'Candidatus Liberibacter asiaticus' (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, Diaphorina citri Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy nrdB gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the nrdB target as low as ~2.6 Log10 copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

Keywords

References

  1. Baldwin, E., Bai, J., Plotto, A., Manthey, J., Narciso, J., Dea, S. and Irey, M. 2012. Effect of nutritional spray regimes on orange juice flavor quality and juice Liberibacter (CLas) DNA detection. Proc. Fla. State Hortic. Soc. 125:239-242.
  2. Bove, J. M. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88:7-37.
  3. Braswell, W. E., Park, J.-W., Stansly, P. A., Kostyk, B. C., Louzada, E. S., da Graca, J. V. and Kunta, M. 2020. Root samples provide early and improved detection of Candidatus Liberibacter asiaticus in Citrus. Sci. Rep. 10:16982.
  4. Choi, C. W., Hyun, J. W., Hwang, R. Y. and Powell, C. A. 2018. Loop-mediated isothermal amplification assay for detection of Candidatus Liberibacter Asiaticus, a causal agent of citrus huanglongbing. Plant Pathol. J. 34:499-505. https://doi.org/10.5423/PPJ.FT.10.2018.0212
  5. da Graca, J. V., Douhan, G. W., Halbert, S. E., Keremane, M. L., Lee, R. F., Vidalakis, G. and Zhao, H. 2016. Huanglongbing: an overview of a complex pathosystem ravaging the world's citrus. J. Integr. Plant Biol. 58:373-387. https://doi.org/10.1111/jipb.12437
  6. Daher, R. K., Stewart, G., Boissinot, M. and Bergeron, M. G. 2016. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 62:947-958. https://doi.org/10.1373/clinchem.2015.245829
  7. Dala-Paula, B. M., Plotto, A., Bai, J., Manthey, J. A., Baldwin, E. A., Ferrarezi, R. S. and Gloria, M. B. A. 2019. Effect of huanglongbing or greening disease on orange juice quality, a review. Front. Plant Sci. 9:1976.
  8. Ghosh, D. K., Kokane, S. B., Kokane, A. D., Warghane, A. J., Motghare, M. R., Bhose, S., Sharma, A. K. and Reddy, M. K. 2018. Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of "Candidatus Liberibacter asiaticus." PLoS ONE 13:e0208530.
  9. Gottwald, T. R. 2010. Current epidemiological understanding of citrus huanglongbing. Annu. Rev. Phytopathol. 48:119-139. https://doi.org/10.1146/annurev-phyto-073009-114418
  10. Gottwald, T. R., da Graca, J. V. and Bassanezi, R. B. 2007. Citrus huanglongbing: the pathogen and its impact. Plant Health Prog. 8:31.
  11. Halbert, S. 2005. The discovery of Huanglongbing in Florida. In: Proceedings of Second International Citrus Canker and Huanglongbing Research Workshop, eds. by T. R. Gottwald, W. N. Dixon, J. H. Graham and P. Berger, p. H-3. Florida Department of Agriculture & Consumer Services, Orlando, FL, USA.
  12. Jagoueix, S., Bove, J.-M. and Garnier, M. 1994. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. Int. J. Syst. Evol. Microbiol. 44:379-386. https://doi.org/10.1099/00207713-44-3-379
  13. Keremane, M. L., Ramadugu, C., Rodriguez, E., Kubota, R., Shibata, S., Hall, D. G., Roose, M. L., Jenkins, D. and Lee, R. F. 2015. A rapid field detection system for citrus huanglongbing associated 'Candidatus Liberibacter asiaticus' from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Prot. 68:41-48. https://doi.org/10.1016/j.cropro.2014.10.026
  14. Kim, J. S. and Wang, N. 2009. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Res. Notes 2:37.
  15. Kumagai, L. B., LeVesque, C. S., Blomquist, C. L., Madishetty, K., Guo, Y., Woods, P. W., Rooney-Latham, S., Rascoe, J., Gallindo, T., Schnabel, D. and Polek, M. 2013. First report of Candidatus Liberibacter asiaticus associated with citrus huanglongbing in California. Plant Dis. 97:283.
  16. Kunta, M., Park, J.-W., Braswell, W. E., da Graca, J. V. and Edwards, P. 2021. Modern tools for detection and diagnosis of plant pathogens. In: Emerging trends in plant pathology, eds. by K. P. Singh, S. Jahagirdar and B. K. Sarma, pp. 63-96. Springer, Singapore.
  17. Kunta, M., Setamou, M., Skaria, M., Rascoe, J. E., Li, W., Nakhla, M. K. and da Graca, J. V. 2012. First report of citrus huanglongbing in Texas. Phytopathology 102:S4.66.
  18. Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E. and Singer, B. H. 2015. Asymptomatic spread of huanglongbing and implications for disease control. Proc. Natl. Acad. Sci. U. S. A. 112:7605-7610. https://doi.org/10.1073/pnas.1508253112
  19. Li, W., Hartung, J. S. and Levy, L. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66:104-115. https://doi.org/10.1016/j.mimet.2005.10.018
  20. Li, W., Li, D., Twieg, E., Hartung, J. S. and Levy, L. 2008. Optimized quantification of unculturable Candidatus Liberibacter spp. in host plants using real-time PCR. Plant Dis. 92:854-861. https://doi.org/10.1094/PDIS-92-6-0854
  21. Lu, L., Cheng, B., Yao, J., Peng, A., Du, D., Fan, G., Hu, X., Zhang, L. and Chen, G. 2013. A new diagnostic system for detection of 'Candidatus Liberibacter asiaticus' infection in citrus. Plant Dis. 97:1295-1300. https://doi.org/10.1094/PDIS-11-12-1086-RE
  22. Masaoka, Y., Pustika, A., Subandiyah, S., Okada, A., Hanundin, E., Purwanto, B., Okuda, M., Okada, Y., Saito, A., Holford, P., Beattie, A. and Iwanami, T. 2011. Lower concentrations of microelements in leaves of citrus infected with "Candidatus Liberibacter asiaticus." Jpn. Agric. Res. Q. 45:269-275. https://doi.org/10.6090/jarq.45.269
  23. McCollum, T. G. and Baldwin, E. A. 2016. Huanglongbing: devastating disease of citrus. Hortic. Rev. 44:315-361. https://doi.org/10.1002/9781119281269.ch7
  24. Misawa, Y., Yoshida, A., Saito, R., Yoshida, H., Okuzumi, K., Ito, N., Okada, M., Moriya, K. and Koike, K. 2007. Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures. J. Infect. Chemother. 13:134-140. https://doi.org/10.1007/s10156-007-0508-9
  25. Morgan, J. K., Zhou, L., Li, W., Shatters, R. G., Keremane, M. and Duan, Y.-P. 2012. Improved real-time PCR detection of 'Candidatus Liberibacter asiaticus' from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes. Mol. Cell. Probes 26:90-98. https://doi.org/10.1016/j.mcp.2011.12.001
  26. Nageswara-Rao, M., Irey, M., Garnsey, S. M. and Gowda, S. 2013. Candidate gene makers for Candidatus Liberibacter asiaticus for detecting citrus greening disease. J. Biosci. 38:229-237. https://doi.org/10.1007/s12038-013-9315-x
  27. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63.
  28. Okuda, M., Matsumoto, M., Tanaka, Y., Subandiyah, S. and Iwanami, T. 2005. Characterization of the tufB-secE-nusG-rpl KAJL-rpo B gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Dis. 89:705-711.
  29. Park, J.-W., Louzada, E. S., Braswell, W. E., Stansly, P. A., da Graca, J. V., McCollum, G., Rascoe, J. E. and Kunta, M. 2018. A new diagnostic real-time PCR method for huanglongbing detection in citrus root tissue. J. Gen. Plant Pathol. 84:359-367. https://doi.org/10.1007/s10327-018-0793-4
  30. Piepenburg, O., Williams, C. H., Stemple, D. L. and Armes, N. A. 2006. DNA detection using recombination proteins. PLoS Biol. 4:e204.
  31. Planet, P., Jagoueix, S., Bove, J. M. and Garnier, M. 1995. Detection and characterization of the African citrus greening Liberobacter by amplification, cloning, and sequencing of the rplKAJL-rpoBC operon. Curr. Microbiol. 30:137-141. https://doi.org/10.1007/BF00296198
  32. Qi, H., Yue, S., Bi, S., Ding, C. and Song, W. 2018. Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens. Bioelectron. 110:207-217. https://doi.org/10.1016/j.bios.2018.03.065
  33. Rattner, R. J., Godfrey, K. E., Hajeri, S. and Yokomi, R. K. 2022. An improved recombinase polymerase amplification coupled with lateral flow assay for rapid field detection of "Candidatus Liberibacter asiaticus." Plant Dis. 106:3091-3099. https://doi.org/10.1094/PDIS-09-21-2098-RE
  34. Rigano, L. A., Malamud, F., Orce, I. G., Filippone, M. P., Marano, M. R., do Amaral, A. M., Castagnaro, A. P. and Vojnov, A. A. 2014. Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. BMC Microbiol. 14:86.
  35. Stansly, P. A., Arevalo, H. A. and Zekri, M. 2010. Area-wide psyllid sprays in southwest Florida: an update on the cooperative program aimed at controlling the HLB vector. Citrus Ind. 91:6-8.
  36. Texeira, D. C., Ayres, J., Kitajima, E. W., Danet, L., Jagoueix-Eveillard, S., Saillard, C. and Bove, J. M. 2005. First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter species, "Candidatus Liberibacter americanus", with the disease. Plant Dis. 89:107.
  37. Teixeira, D. D. C., Danet, J. L., Eveillard, S., Martins, E. C., de Jesus Junior, W. C., Yamamoto, P. T., Lopes, S. A., Bassanezi, R. B., Ayres, A. J., Saillard, C. and Bove, J. M. 2005. Citrus huanglongbing in Sao Paulo State, Brazil: PCR detection of the 'Candidatus' Liberibacter species associated with the disease. Mol. Cell. Probes 19:173-179. https://doi.org/10.1016/j.mcp.2004.11.002
  38. Tomita, N., Mori, Y., Kanda, H. and Notomi, T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protocols 3:877-882. https://doi.org/10.1038/nprot.2008.57
  39. Wang, N., Pierson, E. A., Setubal, J. C., Xu, J., Levy, J. G., Zhang, Y., Li, J., Rangel, L. T. and Martins, J. Jr. 2017. The Candidatus Liberibacter-host interface: insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 55:451-482. https://doi.org/10.1146/annurev-phyto-080516-035513
  40. Wang, Z., Yin, Y., Hu, H., Yuan, Q., Peng, G. and Xia, Y. 2006. Development and application of molecular-based diagnosis for "Candidatus Liberibacter asiaticus", the causal pathogen of citrus huanglongbing. Plant Pathol. 55:630-638. https://doi.org/10.1111/j.1365-3059.2006.01438.x
  41. Zanoli, L. M. and Spoto, G. 2012. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors 3:18-43. https://doi.org/10.3390/bios3010018
  42. Zhao, Y., Chen, F., Li, Q., Wang, L. and Fan, C. 2015. Isothermal amplification of nucleic acids. Chem. Rev. 115:12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428
  43. Zheng, Y., Kumar, N., Gonzalez, P. and Etxeberria, E. 2018. Strigolactones restore vegetative and reproductive developments in huanglongbing (HLB) affected, greenhouse-grown citrus trees by modulating carbohydrate distribution. Sci. Hortic. 237:89-95. https://doi.org/10.1016/j.scienta.2018.04.017
  44. Zheng, Z., Xu, M., Bao, M., Wu, F., Chen, J. and Deng, X. 2016. Unusual five copies and dual forms of nrdB in "Candidatus Liberibacter asiaticus": biological implications and PCR detection application. Sci. Rep. 6:39020.