• Title/Summary/Keyword: RSM : 반응표면법

Search Result 418, Processing Time 0.02 seconds

Optimal Design of the Passenger Vehicle Aluminum Seat for Weight Reduction and Durability Performance Improvement (승용차용 알루미늄 시트의 경량화 및 내구성능 향상을 위한 최적설계)

  • Kim Byung-Kil;Kim Min-Soo;Kim Bum-Jin;Heo Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2005
  • In order to minimize weight of vehicle seat, an optimum design of aluminum seat is presented while satisfying stress and fatigue life constraints. In this study, the analysis model is validated by comparing it's stress with that of test. Then, two-level orthogonal array is used to estimate the design sensitivity for 7 design variables. Finally, the sequential approximate optimization (SAO) is performed using the constructed RSM models. The approximate RSM models are sequentially updated using the analysis results corresponding to the approximate optimum obtained during the SAO. After 14 analyses, the SAO gives an optimal design that can reduce 16.7$\%$ of weight while increasing 369$\%$ of fatigue life and satisfying stress constraint.

Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method (반응표면법을 이용한 석탄 화력 보일러 연소특성 예측)

  • Shin, Sung Woo;Kim, Sin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.

A Study on Six Sigma Robust Design of Gripper Part for LCD Transfer System (식스 시그마 기반 LCD이송장치의 Gripper부 강건설계에 관한 연구)

  • Chung, W.J.;Jung, D.W.;Kim, S.B.;Yoon, Y.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD(Liquid Crystal Display) transfer system. In this paper, the $1^{st}$ DOE(Design of Experiment) is conducted to find out main-effect factors for the design of gripper part. Thirty-six analysis are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The $2^{nd}$ DOE is conducted to obtain RSM(Response Surface Method) equation. The CCD(Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level quality, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine (Resin Chock 교반기용 임펠러가 달린 축의 진동해석)

  • Hong, Do-Kwan;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization (다단계 반응표면법을 이용한 치과용 임플란트의 3차원 형상최적설계)

  • Han, Jung-Suk;Kim, Jong-Soo;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.940-947
    • /
    • 2004
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.

Weight Minimization of a Double-Deck Train Carbody using Response Surface Method (반응표면 모델을 이용한 2층열차 차체의 경량화 설계)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.453-458
    • /
    • 2005
  • Weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. It is required to decide 36 thickness of aluminum extruded panels. However, the design variables are two many to tract. moreover, one execution of structural analysis of double-deck carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Response surface model is used to apporximate static response of double-deck carbody. To obtain plausible response surface model, orthogonal array is empolyed as design of experiment(DOE). Design improvement by approximate model-based optimization is described. Accuracy and efficiency of optimization by using response surface model are discussed.

  • PDF

Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System (반응표면법을 이용한 MLCC 자동 정렬 시스템의 운영조건 최적화)

  • Kim, Jae-Min;Chung, Won-Ji;Shin, O-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.582-588
    • /
    • 2010
  • This paper presents the Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System. his paper is composed of two parts: (1) Testing performance verification of MLCC alignment system, compared with manual operation; (2) Applying response surface method to figuring out the optimal transfer conditions of MLCC transfer system. Based on the successfully developed MLCC alignment system, the optimal transfer conditions have been explored by using RSM. The simulations using $ADAMS^{(R)}$ has been performed according to the cube model of CCD. By using $MiniTAB^{(R)}$, we have established the model of response surface based on the simulation results. The optimal conditions resulted from the response optimization tool of $MiniTAB^{(R)}$ has been verified by being assigned to the prototype of MLCC alignment system.

A Study on the Optimization of Cylindrical Lapping Process for Engineering Fine-Ceramics $(Al_{2}O_{3})$ by Response Surface Methodology (반응표면분석법에 의한 화인세라믹스$(Al_{2}O_{3})$ 원통래핑의 최적화에 관한 연구)

  • 김정두;최민석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.856-865
    • /
    • 1994
  • Cylindrical fine-ceramics, $Al_{2}O_{3}$, was lapped on its outer surface by vibrational lapping unit manufactured in the laboratory. Cylindrical lapping of fine-ceramics is necessarily be characterized and optimized because its process as other finishing methods is time-spending and, so, inefficient one, and because it is very complicated and random process affected by numerous factors in itself and in its environment. In this study, an efficient experimental approach, experimental design method, was used to analyze characteristics of the cylindrical lapping of fine-ceramics, $Al_{2}O_{3}$, and response surface methodology(RSM) to find out the optimal variables combination for the maximum improvement of surface roughness($R_a$). From the final surface roughness point of view in the given lapping conditions, a stationary point or optimal lapping conditions as well as the possible maximum improvement of surface roughness($R_a$) was predicted.

A Study of Optimal Design for Mg Armrest Frame by using Response Surface Method (반응표면법을 이용한 마그네슘 암레스트 프레임의 최적설계 연구)

  • Kim, Eun-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.797-804
    • /
    • 2012
  • Magnesium has a long tradition of use as a lightweight material in the field of automotive industry. This paper presents the design optimization process of Mg armrest frame to minimize its weight by replacing the steel frame. formerly, the analysis of steel armrest frame was peformed to determine the design specifications for Mg armrest frame. The initial design of Mg armrest frame was carried out by topological optimization technique. After six types of design variables and four types of response variables were defined, DOE(Design of Experiment) and RSM (Response Surface Method) were applied in order to measure sensitivity of design variables and realize optimization through regression model. After design optimization, the weight of the optimized Mg armrest frame was reduced by about 3% compared to the initial design of the Mg frame and was decreased by 41.7% in comparison with that of the steel frame. Some prototypical armrest frames were also made by die casting process and tested. The results were satisfying for its design specifications.

Improvement of Rheological Properties of Silica Composites Employing Response Surface Methodology (반응표면분석법을 이용한 실리카복합재료의 레올로지 속성 개선)

  • Yim, Gie-Hong;Yang, Seung-Nam;Kim, Nam-Ki
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • The purpose of this study was improving the rheology properties of dentifrice by finding optimum binders polymer system which consists of carboxymethylcellulose (CMC), carbomer, and Mg/Al silicate. Response surface methodology (RSM) was employed to investigate the correlation between polymers and rheological properties of dentifrice and to optimize responses. Rheological properties were measured with oscillatory rheometer. As a result, it was identified that gel strength and yield stress were dependent on contents of CMC and carbomer and CMC caused long stringiness of dentifrice. And springness of dentifrice was dependent on contents of CMC and Mg/Al silicate. Optimum components proportion of polymers and silicate were obtained by responses optimization process. According to determined optimum components proportion, it was possible to observe a dentifrice with improved rheological properties.