• Title/Summary/Keyword: RS485

Search Result 176, Processing Time 0.023 seconds

A Study on the Development of the SCADA System using the Internet (인터넷을 이용한 SCADA 시스템 구축에 관한 연구)

  • Park, I.K.;Yoon, K.K.;Kim, Y.S.;Lee, S.G.;Ahn, B.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2373-2376
    • /
    • 1998
  • This paper describes the development of the SCADA(Supervisory Control and Data Acquisition) system which can be controlled via the Internet. In this paper, the SCADA system is composed of a number of microprocessor-based RTU(Remote Terminal Unit)s, a MMI(Man Machine Interface) host, a SCADA server, and SCADA clients. There are two protocols used in the system. Each RTU and the MMI host are connected by a RS-485 line and CSMA/CD(Carrier Sense Multiple Access / Collision Detection) protocol is used to communicate with each other. TCP/IP(Transmission Control Protocol/Internet Protocol) is used among the MMI host, the SCADA server, and SCADA clients. The equipments installed in the field are controlled by a number of RTUs. The function of the MMI host is to acquire real-time data from RTUs and control them. The SCADA server supports data transfer between the networked MMI host and the SCADA client on the web-server through TCP/lP. Data transfer is possible regardless of the type of network only if there are TCP/lP Winsock-compatible stack driver. The SCADA client is implemented as the shape of web-page by means of JAVA language. Therefore, it runs on a web-browser such as Netscape and Explorer, and allows a number of users to access this SCADA system.

  • PDF

Delopment of Database for Environment Monitoring and Control Information in Greenhouse (온실 생육환경.제어정보 수집 및 데이터베이스 개발)

  • 공대광;류관희;진제용;유윤관;임정호
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.192-197
    • /
    • 2002
  • 1. 실시간 모니터링 -온실 내부환경의 계측장치로 모듈화된 단일 칩 마이크로프로세서를 이용한 하우스 모니터를 개발하였다. 개발된 다수의 하우스 모니터는 RS-485통신을 이용하여 개발된 프로토콜을 통하여 그룹 모니터와 통신하면서 계측 데이터를 전송하였고 안정된 계측 성능을 보였다. 또한 그룹 모니터는 하우스모니터로부터 수신한 데이터를 인터넷 환경 TCP/IP 통신에 의해 서버에 정보를 전송하고 데이터베이스 서버에 저장할 수 있었다. 2. 클라이언트 서버 모델 -클라이언트 모니터를 통하여 허용된 사용자들은 해당 온실의 상황을 원격지에서 파악할 수 있는 있었다. 또한 분산환경 기술을 이용하여 서버를 경유하여 데이터베이스 서버에서 데이터 셋을 가져와 과거 재배 사례 등을 조회 및 이용 가능하였다. 이는 전문가에게 접근을 허용함으로써 재배에 관한 지원이 가능하도록 하였다. 데이터 베이스 시스템으로 연계하여 온실환경 정보를 분석하는 것이 가능하였다. 3. 기대효과 및 나아가야 할 방향 -개발된 시스템을 식물 공장 내 작물의 재배환경을 데이터베이스화하여 재배사례 데이터베이스를 형성하고 작물이 가장 잘 자라는 최적 재배 환경을 연구하여 고품질의 작물 재배에 이용될 수 있다. 또한 식물공장의 운전실적, 환경 조건, 환경 조절비용 등의 분석에 효율적으로 이용될 수 있을 것으로 예상되며 각 환경인자들과의 관계를 구명하는데 도움을 줄 것이다. 축적된 작물의 재배 사례 데이터베이스를 이용하여 작물 특성 및 재배 연구에 도움을 줄 수 있을 것이다. 제어 장치들의 운영실적을 분석함으로써 제어 시스템의 효율적이고 경제적인 제어가 가능하도록 할 수 있을 것이다. 이들이 모두 완성되면 전문가 및 전문가 시스템으로부터 지원을 받는 지능형 식물공장이 가능할 것이다. 본 연구에서 개발한 계측 모듈 및 데이터베이스 시스템은 실제 농가에 설치된 전용선을 이용하여 실증 실험을 통해 수정·보완하여야 할 것이다. 또한 시설원예분야에서 있어서 통신체계에 대한 표준화 연구가 수행되어 앞으로 개발될 다른 시스템들과의 호환성을 갖도록 해야 할 것이다. 앞으로 온실의 경영 및 관리 데이터베이스를 개발하여 첨단온실의 통합 관리 및 정보 시스템을 구축하여야 할 것이다. 또한, 시설원예의 환경 설계의 기준을 적용할 수 있도록 하여야 할 것이다.

  • PDF

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D.;Chen, Min;Oberheim, Thomas E.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Development of a Prototype Patient Monitoring System with Module-Based Bedside Units and Central Stations: Overall Architecture and Specifications (모듈형 환자감시기와 중앙 환자감시기로 구성되는 환자감시시스템 시제품의 개발: 전체구조 및 사양)

  • Woo, E.J.;Park, S.H.;Jun, B.M.;Moon, C.W.;Lee, H.C.;Kim, S.T.;Kim, H.J.;Seo, J.J.;Chae, K.M.;Park, J.C.;Choi, K.H.;Lee, W.J.;Kim, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.315-319
    • /
    • 1996
  • We have developed a prototype patient monitoring system including module-based bedside units, interbed network, and central stations. A bedside unit consists of a color monitor and a main CPU unit with peripherals including a module controller. It can also include up to 3 module cases and 21 different modules. In addition to the 3-channel recorder module, six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmogaph are provided as parameter modules. Modules and a module controller communicate with up to 1Mbps data rate through an intrabed network based on RS-485 and HDLC protocol. Bedside units can display up to 12 channels of waveforms with any related numeric informations simultaneously. At the same time, it communicates with other bedside units and central stations through interbed network based on 10Mbps Ethernet and TCP/IP protocol. Software far bedside units and central stations fully utilizes gaphical user interface techniques and all functions are controlled by a rotate/push button on bedside unit and a mouse on central station. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances. In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we are developing a relational database server dedicated to the patient monitoring system. We are also developing a clinical workstation with which physicians can review and examine the data from patients through various kinds of computer networks far diagnosis and report generation. Portable bedside units with LCD display and wired or wireless data communication capability will be developed in the near future. New parameter modules including cardiac output, capnograph, and other gas analysis functions will be added.

  • PDF

Implementation for the Remote Control and Operational Status Monitoring Systems of the Industrial Ice Machine (산업용 냉동기의 원격 제어 및 운전 상태 모니터링을 위한 시스템 구현)

  • Jung, Jin-uk;Jin, Kyo-hong;Hwang, Min-tae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.169-178
    • /
    • 2018
  • The ice machine is the machine for making ice. As most of the companies that manufactures and sells the ice machine are small and medium-sized companies, they have been they have been experiencing the trouble for the after-sales service after selling the machine. The difficulties of the after-sales service are mostly caused by unnecessary customer service requests of the purchaser, which eventually leads to the unnecessary expenditure of the seller and the purchaser. However, financially, the poor ice machine manufacturers want to reduce this cost as much as possible. Furthermore, even if they want to sell their products overseas, they are hesitating because of the after-sales service. For this reason, the companies making the ice machine need a system which checks the status of the ice machine and takes the proper actions without the visiting service. Therefore, this paper introduces the remote control and operational status monitoring systems which can monitor the status of the ice machine in the remote area and control it as needed. Through the developed system, the company manufacturing the ice machine and the manager of the ice machine can understand the current status of the ice machine and respond against the ice machine's trouble, immediately. In addition, it can be expected to have great effects on cost reduction because the maintenance and management after selling can be efficiently performed.