• Title/Summary/Keyword: RS Imagery

Search Result 37, Processing Time 0.028 seconds

Standardizing Agriculture-related Land Cover Classification Scheme Using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업관련 토지피복 분류기준 설정 연구)

  • 홍성민;정인균;김성준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.261-265
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat+ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery

  • Park, Tae-Jin;Lee, Jong-Yeol;Lee, Woo-Kyun;Kwak, Doo-Ahn;Kwak, Han-Bin;Lee, Sang-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.703-715
    • /
    • 2011
  • Forests have been considered one of the most important ecosystems on the earth, affecting the lives and environment. The sustainable forest management requires accurate and timely information of forest and tree parameters. Appropriately interpreted remotely sensed imagery can provide quantitative data for deriving forest information temporally and spatially. Especially, analysis of individual tree detection and crown delineation is significant issue, because individual trees are basic units for forest management. Individual trees in aerial imagery have reflectance characteristics according to tree species, crown shape and hierarchical status. This study suggested a method that identified individual trees and delineated crown boundaries through adopting gradient method algorithm to amplified greenness data using red and green band of aerial imagery. The amplification of specific band value improved possibility of detecting individual trees, and gradient method algorithm was performed to apply to identify individual tree tops. Additionally, tree crown boundaries were explored using spectral intensity pattern created by geometric characteristic of tree crown shape. Finally, accuracy of result derived from this method was evaluated by comparing with the reference data about individual tree location, number and crown boundary acquired by visual interpretation. The accuracy ($\hat{K}$) of suggested method to identify individual trees was 0.89 and adequate window size for delineating crown boundaries was $19{\times}19$ window size (maximum crown size: 9.4m) with accuracy ($\hat{K}$) at 0.80.

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eom
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.173-188
    • /
    • 2005
  • The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.

The Design and Implementation of Natural Environmental/Ecological Information System using GIS and RS Data (GIS 및 RS 데이터를 이용한 자연환경/생태계 정보시스템 설계 및 구현)

  • Hwang, Jae Hong;Kim, Sang Ho;Ryu, Keun Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.1-12
    • /
    • 2001
  • This thesis represents the integrated 3D DEM using both the process of satellite image and the real value of topographic maps. This DEM is draped on satellite image processed to improve representations of the real world. The 3D visualization and 3D animation with satellite imagery data enables to depict more vivid and realistic world. The paper also describes and implements the natural environmental/ecological information system that consists of 7 modules to manage environmental data systematically through an enhanced user interface. We make use of topographic map, satellite imagery data and several thematic maps. Each module has a user interface enabling to assist particular needs of decision-making for ecological/environmental assessments associated with spatial analysis of ecosystem and classification of the environmental status quo and other purposes.

  • PDF

Vegetation Classification and Biomass Estimation using IKONOS Imagery in Mt. ChangBai Mountain Area (IKONOS 위성영상을 이용한 중국 장백산 일대의 식생분류 및 바이오매스 추정)

  • Cui, Gui-Shan;Lee, Woo-Kyun;Zhu, Wei-Hong;Lee, Jongyeol;Kwak, Hanbin;Choi, Sungho;Kwak, Doo-Ahn;Park, Taejin
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.356-364
    • /
    • 2012
  • This study was to estimate the biomass of Mt. Changbai mountain area using the IKONOS imagery and field survey data. Then, we prepared the regression function using the vegetation index derived from the IKONOS and biomass estimated from field measured data of previous studies, respectively. The five vegetation index which used in the regression model was SAVI, NDVI, SR, ARVI, and EVI. As a result, the rank of the R-square from coefficient of correlation was as follow, SAVI(0.84), NDVI(0.73), SR(0.59), ARVI(0.0036), EVI(0.0026). Finally, we estimated the biomass of non-measured area using the Soil Adjusted Vegetation Index (SAVI). This study can be used as reference methodology for the estimation of carbon sinks of primary forest.

Automated Algorithm for Super Resolution(SR) using Satellite Images (위성영상을 이용한 Super Resolution(SR)을 위한 자동화 알고리즘)

  • Lee, S-Ra-El;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.209-216
    • /
    • 2018
  • High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.

Development of Suspended Particulate Matter Algorithms for Ocean Color Remote Sensing

  • Ahn, Yu-Hwan;Moon, Jeong-Eun;Gallegos, Sonia
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.285-295
    • /
    • 2001
  • We developed a CASE-II water model that will enable the simulation of remote sensing reflectance($R_{rs}$) at the coastal waters for the retrieval of suspended sediments (SS) concentrations from satellite imagery. The model has six components which are: water, chlorophyll, dissolved organic matter (DOM), non-chlorophyllous particles (NC), heterotrophic microorganisms and an unknown component, possibly represented by bubbles or other particulates unrelated to the five first components. We measured $R_{rs}$, concentration of SS and chlorophyll, and absorption of DOM during our field campaigns in Korea. In addition, we generated $R_{rs}$ from different concentrations of SS and chlorophyll, and various absorptions of DOM by random number functions to create a large database to test the model. We assimilated both the computer generated parameters as well as the in-situ measurements in order to reconstruct the reflectance spectra. We validated the model by comparing model-reconstructed spectra with observed spectra. The estimated $R_{rs}$ spectra were used to (1) evaluate the performance of four wavelengths and wavelengths ratios for accurate retrieval of SS. 2) identify the optimum band for SS retrieval, and 3) assess the influence of the SS on the chlorophyll algorithm. The results indicate that single bands at longer wavelengths in visible better results than commonly used channel ratios. The wavelength of 625nm is suggested as a new and optimal wavelength for SS retrieval. Because this wavelength is not available from SeaWiFS, 555nm is offered as an alternative. The presence of SS in coastal areas can lead to overestimation chlorophyll concentrations greater than 20-500%.

Comparison of Sampling and Wall-to-Wall Methodologies for Reporting the GHG Inventory of the LULUCF Sector in Korea (LULUCF 부문 산림 온실가스 인벤토리 구축을 위한 Sampling과 Wall-to-Wall 방법론 비교)

  • Park, Eunbeen;Song, Cholho;Ham, Boyoung;Kim, Jiwon;Lee, Jongyeol;Choi, Sol-E;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.385-398
    • /
    • 2018
  • Although the importance of developing reliable and systematic GHG inventory has increased, the GIS/RS-based national scale LULUCF (Land Use, Land-Use Change and Forestry) sector analysis is insufficient in the context of the Paris Agreement. In this study, the change in $CO_2$ storage of forest land due to land use change is estimated using two GIS/RS methodologies, Sampling and Wall-to-Wall methods, from 2000 to 2010. Particularly, various imagery with sampling data and land cover maps are used for Sampling and Wall-to-Wall methods, respectively. This land use matrix of these methodologies and the national cadastral statistics are classified by six land-use categories (Forest land, Cropland, Grassland, Wetlands, Settlements, and Other land). The difference of area between the result of Sampling methods and the cadastral statistics decreases as the sample plot distance decreases. However, the difference is not significant under a 2 km sample plot. In the 2000s, the Wall-to-Wall method showed similar results to sampling under a 2 km distance except for the Settlement category. With the Wall-to-Wall method, $CO_2$ storage is higher than that of the Sampling method. Accordingly, the Wall-to-Wall method would be more advantageous than the Sampling method in the presence of sufficient spatial data for GHG inventory assessment. These results can contribute to establish an annual report system of national greenhouse gas inventory in the LULUCF sector.

Class Knowledge-oriented Automatic Land Use and Land Cover Change Detection

  • Jixian, Zhang;Yu, Zeng;Guijun, Yang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.47-49
    • /
    • 2003
  • Automatic land use and land cover change (LUCC) detection via remotely sensed imagery has a wide application in the area of LUCC research, nature resource and environment monitoring and protection. Under the condition that one time (T1) data is existed land use and land cover maps, and another time (T2) data is remotely sensed imagery, how to detect change automatically is still an unresolved issue. This paper developed a land use and land cover class knowledge guided method for automatic change detection under this situation. Firstly, the land use and land cover map in T1 and remote sensing images in T2 were registered and superimposed precisely. Secondly, the remotely sensed knowledge database of all land use and land cover classes was constructed based on the unchanged parcels in T1 map. Thirdly, guided by T1 land use and land cover map, feature statistics for each parcel or pixel in RS images were extracted. Finally, land use and land cover changes were found and the change class was recognized through the automatic matching between the knowledge database of remote sensing information of land use & land cover classes and the extracted statistics in that parcel or pixel. Experimental results and some actual applications show the efficiency of this method.

  • PDF

Standardizing Agriculture-related Land Cover Classification Scheme using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업지역 토지피복 분류기준 설정)

  • Hong Seong-Min;Jung In-Kyun;Kim Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.