• Title/Summary/Keyword: RS 코드

Search Result 57, Processing Time 0.024 seconds

Performance Analysis of Telemetering Method using Delayed Frame Time Diversity (DFTD) and Reed-Solomon Code (지연프레임 시간다이버시티와 RS 코드를 사용한 원격측정방식의 성능분석)

  • Koh, Kwang-Ryul;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.503-511
    • /
    • 2012
  • In this paper, the performance analysis of telemetering method using delayed frame time diversity (DFTD) as the outer code and Reed-Solomon (RS) code as the inner code is described. DFTD is used to transmit a real-time frame together with a time-delayed frame which was saved in the memory during a defined period. The RS code as a kind of FEC (forward error correction) is serially concatenated with DFTD. This method was applied to the design of telemetry units that have been used for flight tests in a communication environment with deep fading. The data of the flight test for four cases with no applied code, with DFTD only, with the RS code only, and with both DFTD and the RS code are used to analyze the performance. The simulation for time-delay suggests the possibility that all frame errors can be removed. And the results of 12 flight tests show the performance superiority of this new method to compare with the RS code only.

Performance Analysis of RS codes for Low Power Wireless Sensor Networks (저전력 무선 센서 네트워크를 위한 RS 코드의 성능 분석)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 2010
  • In wireless sensor networks, the data transmitted from the sensor nodes are susceptible to corruption by errors which caused of noisy channels and other factors. In view of the severe energy constraint in Sensor Networks, it is important to use the error control scheme of the energy efficiently. In this paper, we presented RS (Reed-Solomon) codes in terms of their BER performance and power consumption. RS codes work by adding extra redundancy to the data. The encoded data can be stored or transmitted. It could have errors introduced, when the encoded data is recovered. The added redundancy allows a decoder to detect which parts of the received data is corrupted, and corrects them. The number of errors which are able to be corrected by RS code can determine by added redundancy. The results of experiment validate the performance of proposed method to provide high degree of reliability in low-power communication. We could predict the lifetime of RS codes which transmitted at 32 byte a 1 minutes. RS(15, 13), RS(31, 27), RS(63, 57), RS(127,115), and RS(255,239) can keep the days of 173.7, 169.1, 163.9, 150.7, and 149.7 respectively. The evaluation based on packet reception ratio (PRR) indicates that the RS(255,239) extends a sensor node's communication range by up about 3 miters.

Performance Analysis of FEC for Low Power Wireless Sensor Networks (저전력 무선 센서 네트워크를 위한 FEC 성능 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.882-885
    • /
    • 2010
  • In view of the severe energy constraint in sensor networks, it is important to use the error control scheme of the energy efficiently. In this paper, we presented FEC (Forward Error Correcting) codes in terms of their power consumption. One method of FEC is RS (Reed-Solomon) coding, which uses block codes. RS codes work by adding extra redundancy to the data. The encoded data can be stored or transmitted. It could have errors introduced, when the encoded data is recovered. The added redundancy allows a decoder to detect which parts of the received data is corrupted, and corrects them. The number of errors which are able to be corrected by RS code can determine by added redundancy. We could predict the lifetime of RS codes which transmitted at 32 byte a 1 minutes. RS(15, 13), RS(31, 27), RS(63, 57), RS(127,115), and RS(255,239) can keep the days of 138, 132, 126, 111, and 103 respectively.

  • PDF

Performance Analysis of Reed Solomon/Convolutional Concatenated Codes and Turbo code using Semi Random Interleaver over the Radio Communication Channel (무선통신 채널에서 RS/길쌈 연쇄부호와 세미 랜덤 인터리버를 이용한 터보코드의 성능 분석)

  • 홍성원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.861-868
    • /
    • 2001
  • In this paper, the performance of Reed Solomon(RS)/convolution리 concatenated codes and turbo code using semi random interleaver over the radio communication channel was analyzed. In the result, we proved that the performance of decoder was excellent as increase the interleaver size, constraint length, and iteration number. When turbo code using semi random interleaver and Hsiconvolutional concatenated codes was constant constraint length L=5, BER=10-4 , each value of $E_b/N_o$ was 4.5〔dB〕 and 2.95〔dB〕. Therefore, when the constraint length was constant, we proved that the performance of turbo code is superior to RS/Convolutional concatenated codes about 1.55〔dB〕 in the case of BER=10-4.

  • PDF

The design and performance analysis of RS(255,223) code for X-band downlink of STSAT-3 (과학기술위성3호의 X-대역 하향링크를 위한 RS(255,223) 코드 설계 및 성능 분석)

  • Seo, In-Ho;Kim, Byung-Jun;Lee, Jong-Ju;Kwak, Seong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.195-199
    • /
    • 2010
  • (255,223) RS(Reed-Solomon) code which is the CCSDS(Consultative Committee for Space Data Systems) standard was used in the STSAT-3 to correct errors during the downlink of payload data. The RS encoder developed by VHDL was implemented in MMU(Mass Memory Unit). Moreover, the RS decoder developed by C-language was implemented in the DRS(Data Receiving System) of ground station. In this paper, we reported the design and analysis results of RS(255,223) for STSAT-3. The BER(Bit Error Rate) performance from MMU to DRS was confirmed through the downlink test at 16 Mbps. Also, the error correction performance and capability of RS(255,223) was tested by the manual attenuation of the RF(Radio Frequency) signal in the X-band transmitter resulting in putting some errors in the communication line.

A Decoder Design for High-Speed RS code (RS 코드를 이용한 복호기 설계)

  • 박화세;김은원
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.59-66
    • /
    • 1998
  • In this paper, the high-speed decoder for RS(Reed-Solomon) code, one of the most popular error correcting code, is implemented using VHDL. This RS decoder is designed in transform domain instead of most time domain. Because of the simplicity in structure, transform decoder can be easily realized VLSI chip. Additionally the pipeline architecture, which is similar to a systolic array is applied for all design. Therefore, This transform RS decoder is suitable for high-rate data transfer. After synthesis with FPGA technology, the decoding rate is more 43 Mbytes/s and the area is 1853 LCs(Logic Cells). To compare with other product with pipeline architecture, this result is admirable. Error correcting ability and pipeline performance is certified by computer simulation.

  • PDF

A Study on Low Power Consuming FEC Design for XFP Transceiver System Transmission (XFP 트랜시버 데이터 전송을 위한 저전력 FEC 설계에 관한 연구)

  • Lee, Min Soo;Lee, Kyeong Won;Yoon, Byoung Don;Min, Hyoung Bok
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.973-974
    • /
    • 2010
  • 본 논문에서는 XFP(10 Gb/s Small Form Factor Pluggable) 트랜시버 모듈의 정확한 데이터 전송을 위해 저전력 FEC를 설계하였다. 현재 많이 사용되며 버스트 에러에 강한 Reed-solomon코드를 구현하고 코드의 분산 연산을 통해 저전력 RS코드를 구현하였다. 본 논문에서 제안한 코드는 기존의 RS코드 대비 20% 면적이 감소하는 것을 확인할 수 있었으며, 또한 전력소모가 10% 감소되는 것을 확인 할 수 있었다.

High-Speed Reed-Solomon Decoder Using New Degree Computationless Modified Euclid´s Algorithm (새로운 DCME 알고리즘을 사용한 고속 Reed-Solomon 복호기)

  • 백재현;선우명훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.459-468
    • /
    • 2003
  • This paper proposes a novel low-cost and high-speed Reed-Solomon (RS) decoder based on a new degree computationless modified Euclid´s (DCME) algorithm. This architecture has quite low hardware complexity compared with conventional modified Euclid´s (ME) architectures, since it can remove completely the degree computation and comparison circuits. The architecture employing a systolic away requires only the latency of 2t clock cycles to solve the key equation without initial latency. In addition, the DCME architecture using 3t+2 basic cells has regularity and scalability since it uses only one processing element. The RS decoder has been synthesized using the 0.25${\mu}{\textrm}{m}$. Faraday CMOS standard cell library and operates at 200MHz and its data rate suppots up to 1.6Gbps. For tile (255, 239, 8) RS code, the gate counts of the DCME architecture and the whole RS decoder excluding FIFO memory are only 21,760 and 42,213, respectively. The proposed RS decoder can reduce the total fate count at least 23% and the total latency at least 10% compared with conventional ME architectures.

Performance Comparison of EFTS According by Modulations and Channel Codes (변조 방식과 채널 코드에 따른 EFTS 성능 비교)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.94-98
    • /
    • 2013
  • A report of security problems and simultaneous operation limits of Standard tone currently used for FTS introduces the development of a next generation FTS. In this paper, BER performance by modulations and channel coding methods for EFTS are compared. Simulation results show that coherent modulations have better BER performance than noncoherent modulations. However the environments of a lunching vehicle may cause serious problems in achieving and maintaining synchronization and the increasing complexity of coherent systems also increases reliability problems. Therefore noncoherent systems are suitable for FTS even though BER performace of noncoherent systems is lower than coherent systems. Noncoherent DPSK has better BER performance than noncoherent CPFSK. However the PEP of noncoherent DPSK is 0.8dB higher than noncoherent CPFSK. Therefore a transmitter of noncoherent DPSK has more output power than noncoherent CPFSK. Convoltional code has better BER performance than RS code. However RS code has a tendency of steeply decreasing BER near the wanted $E_b/N_0$.

The Study about Channel code to Overcome Multipath of Underwater Channel (수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구)

  • Kim, Nam-Soo;Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.