• Title/Summary/Keyword: ROS(Robot operating system)

Search Result 62, Processing Time 0.029 seconds

Teleoperation Control of ROS-based Industrial Robot Using EMG Signals (근전도센서를 이용한 ROS기반의 산업용 로봇 원격제어)

  • Jeon, Se-Yun;Park, Bum Yong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2020
  • This paper introduces a method to control an industrial robot arm to imitate the movement of the human arm and hand using electromyography (EMG) signals. The proposed method is implemented on the UR3 robot that is a popular industrial robot and a MYO armband that measure the EMG signals generated by human muscles. The communications for the UR3 robot and the MYO armband are integrated in the robot operating system (ROS) that is a middle-ware to develop robot systems easily. The movement of the human arm and hand is detected by the MYO armband, which is utilized to recognize and to estimate the speed of the movement of the operator's arm and the motion of the operator's hand. The proposed system can be easily used when human's detailed movement is required in the environment where human can't work. An experiments have been conducted to verify the performance of the proposed method using the teleoperation of the UR3 robot.

Hazardous Gas Detecting and Capturing Robot (유해가스 탐지·포집 로봇)

  • Shin, Juseong;Pyo, Juhyun;Lee, Meungsuk;Park, Sanghyun;Park, Seoyeon;Suh, Jinho;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • This study presents one man-portable, hazardous gas detecting and capturing robot. The robot can be fit in the trunk of a sedan car. Its weight is less than 20 kg. A dedicated gas intake mechanism is proposed for the robot. The robot can detect and capture gases at a height of 2 m above the ground, although the height of the robot is about 0.2 m. The performance of the gas intake mechanism is verified through computational fluid dynamics (CFD) analysis and experiments. Its gas detecting signals were acquired by serial communication and processed in Robot Operating System (ROS) based control software. The proposed robot can successfully move on rough terrains such as stairs, sand roads, and rock roads.

A path planning method for indoor Self-driving robot based on ROS (실내 자율주행을 위한 ROS 기반 이동 로봇의 경로 계획 방법)

  • Baek, Ji-Hoon;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.238-241
    • /
    • 2018
  • 본 논문은 Linux ubuntu에서 로봇 개발 플랫폼 ROS(Robot Operating System)을 이용하여 실내 자율주행 관련 패키지와 LRF센서를 사용한 경로탐색을 하기까지의 과정 그리고 향후의 설계 방안에 대해 다룬다.

Person Tracking by Detection of Mobile Robot using RGB-D Cameras

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • In this paper, we have implemented a low-cost mobile robot supporting the person tracking by detection using RGB-D cameras and ROS(Robot Operating System) framework. The mobile robot was developed based on the Kobuki mobile base equipped with 2's Kinect devices and a high performance controller. One kinect device was used to detect and track the single person among people in the constrained working area by combining point cloud data filtering & clustering, HOG classifier and Kalman Filter-based estimation successively, and the other to perform the SLAM-based navigation supported in ROS framework. In performance evaluation, the person tracking by detection was proved to be robustly executed in real-time, and the navigation function showed the accuracy with the mean distance error being lower than 50mm. The mobile robot implemented has a significance in using the open-source based, general-purpose and low-cost approach.

ROS-based Pick-and-Place Motion Control for a Robot Arm of 4 Degrees of Freedom (자유도-4 로봇 팔을 위한 ROS 기반 Pick-and-Place 동작 제어)

  • Kim, Young-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.53-54
    • /
    • 2018
  • 본 논문은 ROS 프레임워크를 기반으로 4-자유도를 가진 로봇 팔의 Pick-and-Place 동작 제어를 구현하고, 틱택토 게임에 적용한 사례를 제시한다. 로봇 팔의 Pick-and-Place 동작 제어는 움직임 궤적 계획, 충돌 회피 그리고 역기구학 모델링 연산들과 이를 이용한 복잡한 제어 과정을 요구한다. ROS 프레임워크는 간단한 인터페이스 통해 로봇 팔의 동작을 용이하게 제어할 수 있도록 일련의 연산들과 제어 동작을 통합하여 MoveIt 패키지를 제공하고 있으며, 본 논문은 이 패키지를 기반으로 4-자유도의 로봇 팔에 대한 동작 제어 모듈을 구현하였다. 또한 이를 틱택토 게임에 적용하여 로봇 팔을 적절히 제어함을 확인하였다.

  • PDF

A Study on the Analysis of TEB Local Planner Parameters to Improve the Target Reach Time of Autonomous Mobile Robot (자율주행 이동로봇의 목표 도달 시간을 개선하기 위한 TEB Local Planner 파라미터의 분석에 관한 연구)

  • Roh, Hyeong-Seok;Jung, Ui;Han, Jung-Min;Jeon, Jung-Hyeon;Jeon, Ho-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.853-859
    • /
    • 2022
  • In this study, we analyzed the instantaneous trajectory generation capability and target arrival rate of a mobile robot by changing the parameter of the TEB (Timed Elastic Band) Local Planner among local planners that affect the instantaneous obstacle avoidance ability of the mobile robot using ROS (Robot Operating System) simulation and real experience. As a result, we can expect a decrease in the target arrival time of the mobile robot through a decrease in the parameter values of the TEB Local Planner's min_obstacle_dist, inflation_dist, and penalty_epsilon. However, if this parameter is reduced too much, the risk of obstacle collision of the moving robot is increases, so it is important to combine the appropriate values to construct the parameter.

Priority-based Teleoperation System for Differential-drive Mobile Robots (차동 구동형 모바일 로봇의 효율적인 운용을 위한 우선순위 기반의 원격제어 시스템)

  • Lee, Dong-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • In situations where mobile robots are operated either by autonomous systems or human operators, such as smart factories, priority-based teleoperation is crucial for the multiple operators with different priority to take over the right of the robot control without conflict. This paper proposes a priority-based teleoperation system for multiple operators to control the robots. This paper also introduces an efficient joystick-based robot control command generation algorithm for differential-drive mobile robots. The proposed system is implemented with ROS (Robot Operating System) and embedded control boards, and is applied to Pioneer 3AT mobile robot platform. The experimental results demonstrate the effectiveness of the proposed joystick control command algorithm and the priority-based control input selection.

Development of Autonomous Algorithm for Boat Using Robot Operating System (로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발)

  • Jo, Hyun-Jae;Kim, Jung-Hyeon;Kim, Su-Rim;Woo, Ju-Hyun;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.

Development of autonomous driving logistics transport robot (자율주행 물류 이송 로봇)

  • Lee, Jeong-woo;Kim, Dong-yeon;Lee, Sang-yun;Park, Yu-jin;Park, Yang-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.321-322
    • /
    • 2022
  • 본 논문에서는 ROS(Robot Operating System) 기반으로 한 로봇(Robot)에 레이저 거리 센서(LiDAR)를 설치하여 SLAM(Simultaneous Localization And Mapping) 기법으로 지도 정보를 습득 및 저장하고, 이를 기반으로 맵핑된 환경과 환경 내 장애물을 회피하여 안전하고 정확하게 이동할 수 있도록 하였다. ROS는 하드웨어 추상화, 장치 드라이버, 시각화 도구, 패키지 관리 등 로봇 애플리케이션을 개발할 수 있도록 라이브러리와 도구를 제공한다. 또한 로봇 동작에 사용되는 프로세스 간 TCP-IP 통신을 통해 연동할 수 있도록 한다[1]. Ubuntu 18.04 버전의 OS에 ROS Melodic 버전을 설치해서 앱으로 선택된 목적지로 이동하는 물류 이송 로봇을 구현하였다.

  • PDF