• Title/Summary/Keyword: ROMs

Search Result 79, Processing Time 0.027 seconds

Arginine addition in a diet for weaning pigs can improve the growth performance under heat stress

  • Yun, Won;Song, Minho;Lee, Jihwan;Oh, Hanjin;An, Jiseon;Kim, Gokmi;Lee, Sungdae;Lee, Suhyup;Kim, Hyeun Bum;Cho, Jinho
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.460-467
    • /
    • 2020
  • The effects of arginine (Arg) and methionine (Met) supplementation on nutrient use in pigs were determined under hot season conditions. A total of five experimental diets including basal diet (CON) were supplemented with two types of amino acids (Arg and Met) and two different amounts of amino acids (0.2% and 0.4%). Under hot season condition, pigs fed with additional Arg were significantly higher in average daily gain (ADG) than the CON group and the ADG increased linearly (p < 0.05) with increasing Arg supplementation. But there was no significant difference with Met supplementation (p > 0.05). The apparent ileal digestibility (AID) of amino acids had no significant difference among treatments (p > 0.05), while d-reactive oxygen metabolites (d-ROMs) concentration in treatments with Arg supplementation, were significantly higher (p < 0.05) than other treatments. In conclusion, exposure of pigs to heat stress does not affect the AID of amino acid, whereas pig fed with additional Arg improved ADG and feed efficiency under heat stress condition.

Finite Element Analysis of a Newly Designed Screw Type Fixture for an Artificial Intervertebral Disc (새로운 방식의 나사형 인공디스크 고정체 해석)

  • Lim, Jong-Wan;Yang, Hyun-Ik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.56-66
    • /
    • 2010
  • The various total replacement artificial discs have developed because spinal fusion has shown a lesser mobility of an operated segment and an accelerated degeneration at adjacent discs. But almost artificial discs have not yet been reached on the substitute surgery of fusion because many problems such as those clinical success rates were not more than them of fusion have not solved. In this paper, vertically inserted assemble-screw fixture in vertebrae was proposed to improve the fixed capability of artificial disc. And also, to evaluate the design suitability of newly designed screw-type, including fixtures of commercial discs such as wedge and plate type, the 1/4 finite element model with a vertebra and various implanted fixtures were generated, and next, 3 bending motions such as flexion, bending and twisting under the moment of 10Nm and compression under the force of 1000N were considered, respectively and finally, FE analyses were performed. Results of three fixture types were compared, such as Range of Motion and maximal stress, and so on. For ROM, the screw type was average 58% less than the wedge type and was average 42% less than the plate type under all loading conditions. For average stress ratio at closer nodes between vertebra and each fixture, the wedge type was the lowest as minimum 0.02 in twisting, screw types were the highest as maximum 0.28 in compression. As the results of using cement material, it was predicted that the instability problem of the wedge type was better solved. The screw type which could be increased by implanting depth according to the number of assembling mid screws, showed that the decreased tendency of ROMs and maximal cancellous bone stresses. In further study, controlling the number of assembling screws that was suitable for a patient's bone quality, development of surgical tools and keeping on design supplementations, which will be able to develop the competitive artificial disc.

Transport Process and Directly Entrainment Possibility into the Yellow Sea of Todarodes Pacificus Winter Cohort (살오징어(Todaroes pacificus) 겨울발생군의 이동패턴 및 직접적 황해 유입 가능성)

  • Song, Ji-Young;Lee, Joon-Soo;Kim, Jung-Jin;Lee, Ho-Jin;Park, Myung-Hee;Han, In-Seong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.183-194
    • /
    • 2017
  • The catch of Todarodes pacificus in the Yellow Sea is commonly known as the winter cohort. So, to understand the transport process of winter cohort of T. pacificus, and to identify whether the simulated individuals which are transported directly into the Yellow Sea (YS) influence these resources immediately, we conducted a Lagrangian-particle-tracking numerical experiments of T. pacificus from 2005 to 2010 using LTRANS and ROMS. The results show that: (1) Most of the released individuals spread out to the open sea by the Kuroshio and the Tsushima Warm Current around 30 days after release. (2) Unlike the hypothesis proposed by Rosa et al. (2011), Around $30-33N^{\circ}$ near Jeju Island simulated the initial position (3) About 0.01% of individuals released in December were transported solely into the YS around 15 days after release. However there were no surviving individuals due to the low temperature less than $12^{\circ}C$. Also the variation of individuals entered into the YS was not significantly correlated with it in YS catches during the experimental period. Therefore, the most of resources in the YS is assumed to be more influenced by diverse factors of the Pacific Ocean and East Sea than the direct transport in the YS of winter cohort.

Effect of Forward-and-Backward Shift Trunk Exercise Using Proprioceptive Neuromuscular Facilitation Diagonal Pattern in Closed Kinematic Chain Exercises on Upper Limb Function and ADL in Stroke Patient -A Single-Subject Design- (닫힌사슬에서의 PNF 대각선 패턴을 이용한 몸통 전·후방 이동운동이 뇌졸중환자의 상지 기능 및 일상생활에 미치는 영향 -단일 사례 연구-)

  • Park, Si-Eun;Moon, Sang-Hyun
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.237-246
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of forward-and-backward shift trunk exercise using a proprioceptive neuromuscular facilitation (PNF) diagonal pattern in a closed kinematic chain exercise on the upper limb function and activity of daily living (ADL) in a stroke patient. Methods: One subject participated in this study. The study used a reversal A-B-A' design, where A and A' were the baseline period (no intervention), and B was the intervention period. The intervention was a forward-and-backward trunk shift exercise, using a PNF diagonal pattern on both a stand-on-hand position and a quadruped position of closed kinematic chain exercises, for 20 min per day for 2 weeks. The range of motion (ROM) of the shoulder joint was measured and a Fugl-Meyer assessment of upper extremity (FMA-UE) and a functional independence measure (FIM) were performed to measure upper limb function and activity of daily living (ADL). Results: ROMs of shoulder joint (flexion, extension, abduction, and external rotation) increased in the intervention phase. The FMA-UE score increased (from 28 to 36) in the intervention phase. The FIM score increased (from 20 to 25) in the intervention phase. These increases were maintained after intervention (Baseline II). Conclusion: These results suggest that forward-and-backward shift trunk exercises using a PNF diagonal pattern in a closed kinematic chain exercise have a positive effect on stroke patients' upper limb function and ADL ability.

Efficient Scheduling Schemes for Low-Area Mixed-radix MDC FFT Processor (저면적 Mixed-radix MDC FFT 프로세서를 위한 효율적인 스케줄링 기법)

  • Jang, Jeong Keun;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.29-35
    • /
    • 2017
  • This paper presents a high-throughput area-efficient mixed-radix fast Fourier transform (FFT) processor using the efficient scheduling schemes. The proposed FFT processor can support 64, 128, 256, and 512-point FFTs for orthogonal frequency division multiplexing (OFDM) systems, and can achieve a high throughput using mixed-radix algorithm and eight-parallel multipath delay commutator (MDC) architecture. This paper proposes new scheduling schemes to reduce the size of read-only memories (ROMs) and complex constant multipliers without increasing delay elements and computation cycles; thus, reducing the hardware complexity further. The proposed mixed-radix MDC FFT processor is designed and implemented using the Samsung 65nm complementary metal-oxide semiconductor (CMOS) technology. The experimental result shows that the area of the proposed FFT processor is 0.36 mm2. Furthermore, the proposed processor can achieve high throughput rates of up to 2.64 GSample/s at 330 MHz.

A Biomechanical Comparison among Three Surgical Methods in Bilateral Subaxial Cervical Facet Dislocation

  • Byun, Jae-Sung;Kim, Sung-Min;Choi, Sun-Kil;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.2
    • /
    • pp.89-95
    • /
    • 2005
  • Objective: The biomechanical stabilities between the anterior plate fixation after anterior discectomy and fusion (ACDFP) and the posterior transpedicular fixation after ACDF(ACDFTP) have not been compared using human cadaver in bilateral cervical facet dislocation. The purpose of this study is to compare the stability of ACDFP, a posterior wiring procedure after ACDFP(ACDFPW), and ACDFTP for treatment of bilateral cervical facet dislocation. Methods: Ten human spines (C3-T1) were tested in the following sequence: the intact state, after ACDFP(Group 1), ACDFPW(Group 2), and ACDFTP(Group 3). Intervertebral motions were measured by a video-based motion capture system. The range of motion(ROM) and neutral zone(NZ) were compared for each loading mode to a maximum of 2.0Nm. Results: ROMs for Group 1 were below that of the intact spine in all loading modes, with statistical significance in flexion and extension, but NZs were decreased in flexion and extension and slightly increased in bending and axial rotation without significances. Group 2 produced additional stability in axial rotation of ROM and in flexion of NZ than Group 1 with significance. Group 3 provided better stability than Group 1 in bending and axial rotation, and better stability than Group 2 in bending of both ROM and NZ. There was no significant difference in extension modes for the three Groups. Conclusion: ACDFTP(Group 3) demonstrates the most effective stabilization followed by ACDFPW(Group 2), and ACDFP(Group 1). ACDFP provides sufficient strength in most loading modes, ACDFP can provide an effective stabilization for bilateral cervical facet dislocation with a brace.

Change of Lumbar Motion after Multi-Level Posterior Dynamic Stabilization with Bioflex System : 1 Year Follow Up

  • Park, Hun-Ho;Zhang, Ho-Yeol;Cho, Bo-Young;Park, Jeong-Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.285-291
    • /
    • 2009
  • Objective : This study examined the change of range of motion (ROM) at the segments within the dynamic posterior stabilization, segments above and below the system, the clinical course and analyzed the factors influencing them. Methods : This study included a consecutive 27 patients who underwent one-level to three-level dynamic stabilization with Bioflex system at our institute. All of these patients with degenerative disc disease underwent decompressive laminectomy with/without discectomy and dynamic stabilization with Bioflex system at the laminectomy level without fusion. Visual analogue scale (VAS) scores for back and leg pain, whole lumbar lordosis (from L1 to S1), ROMs from preoperative, immediate postoperative, 1.5, 3, 6, 12 months at whole lumbar (from L1 to S1), each instrumented levels, and one segment above and below this instrumentation were evaluated. Results : VAS scores for leg and back pain decreased significantly throughout the whole study period. Whole lumbar lordosis remained within preoperative range, ROM of whole lumbar and instrumented levels showed a significant decrease. ROM of one level upper and lower to the instrumentation increased, but statistically invalid. There were also 5 cases of complications related with the fixation system. Conclusion : Bioflex posterior dynamic stabilization system supports operation-induced unstable, destroyed segments and assists in physiological motion and stabilization at the instrumented level, decrease back and leg pain, maintain preoperative lumbar lordotic angle and reduce ROM of whole lumbar and instrumented segments. Prevention of adjacent segment degeneration and complication rates are something to be reconsidered through longer follow up period.

Implementation of the Ensemble Kalman Filter to a Double Gyre Ocean and Sensitivity Test using Twin Experiments (Double Gyre 모형 해양에서 앙상블 칼만필터를 이용한 자료동화와 쌍둥이 실험들을 통한 민감도 시험)

  • Kim, Young-Ho;Lyu, Sang-Jin;Choi, Byoung-Ju;Cho, Yang-Ki;Kim, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.129-140
    • /
    • 2008
  • As a preliminary effort to establish a data assimilative ocean forecasting system, we reviewed the theory of the Ensemble Kamlan Filter (EnKF) and developed practical techniques to apply the EnKF algorithm in a real ocean circulation modeling system. To verify the performance of the developed EnKF algorithm, a wind-driven double gyre was established in a rectangular ocean using the Regional Ocean Modeling System (ROMS) and the EnKF algorithm was implemented. In the ideal ocean, sea surface temperature and sea surface height were assimilated. The results showed that the multivariate background error covariance is useful in the EnKF system. We also tested the sensitivity of the EnKF algorithm to the localization and inflation of the background error covariance and the number of ensemble members. In the sensitivity tests, the ensemble spread as well as the root-mean square (RMS) error of the ensemble mean was assessed. The EnKF produces the optimal solution as the ensemble spread approaches the RMS error of the ensemble mean because the ensembles are well distributed so that they may include the true state. The localization and inflation of the background error covariance increased the ensemble spread while building up well-distributed ensembles. Without the localization of the background error covariance, the ensemble spread tended to decrease continuously over time. In addition, the ensemble spread is proportional to the number of ensemble members. However, it is difficult to increase the ensemble members because of the computational cost.

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction (모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1211-1222
    • /
    • 2011
  • It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF