• Title/Summary/Keyword: ROI& #40;Region-Of-Interest& #41;

Search Result 2, Processing Time 0.016 seconds

Design of AI-Based VTS Radar Image for Object Detection-Recognition-Tracking Algorithm (인공지능 기반 VTS 레이더 이미지 객체 탐지-인식-추적 알고리즘 설계)

  • Yu-kyung Lee;Young Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.40-41
    • /
    • 2023
  • This paper introduces the design of detection, recognition, and tracking algorithms for VTS radar image-based objects. The detection of objects in radar images utilizes artificial intelligence technology to determine the presence or absence of objects, and can classify the type of object using AI technology. Tracking involves the continuous tracking of detected objects over time, including technology to prevent confusion in the movement path. In particular, for land-based radar, there are unnecessary areas for detection depending on the terrain, so the function of detecting and recognizing vessels within the region of interest (ROI) set in the radar image is included. In addition, the extracted coordinate information is designed to enable various applications and interpretations by calculating speed, direction, etc.

  • PDF

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF