• Title/Summary/Keyword: RNMC

Search Result 1, Processing Time 0.015 seconds

A 10b 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS Pipeline ADC for HDTV Applications (HDTV 응용을 위한 10비트 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS 파이프라인 A/D 변환기)

  • Park, Beom-Soo;Kim, Young-Ju;Park, Seung-Jae;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.60-68
    • /
    • 2009
  • This work proposes a 10b 200MS/s 65nm CMOS ADC for high-definition video systems such as HDTV requiring high resolution and fast operating speed simultaneously. The proposed ADC employs a four-step pipeline architecture to minimize power consumption and chip area. The input SHA based on four capacitors reduces the output signal range from $1.4V_{p-p}$ to $1.0V_{p-p}$ considering high input signal levels at a low supply voltage of 1.2V. The proposed three-stage amplifiers in the input SHA and MDAC1 overcome the low output resistance problem as commonly observed in a 65nm CMOS process. The proposed multipath frequency-compensation technique enables the conventional RNMC based three-stage amplifiers to achieve a stable operation at a high sampling rate of 200MS/s. The conventional switched-bias power-reduction technique in the sub-ranging flash ADCs further reduces power consumption while the reference generator integrated on chip with optional off-chip reference voltages allows versatile system a locations. The prototype ADC in a 65nm CMOS technology demonstrates a measured DNL and INL within 0.19LSB and 0.61LSB, respectively. The ADC shows a maximum SNDR of 54.BdB and 52.4dB and a maximum SFDR of 72.9dB and 64.8dB at 150MS/S and 200MS/s, respectively. The proposed ADC occupies an active die area of $0.76mm^2$ and consumes 75.6mW at a 1.2V supply voltage.