• 제목/요약/키워드: RNA-mediated gene silencing

검색결과 51건 처리시간 0.028초

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.

Short-Hairpin RNA-Mediated MTA2 Silencing Inhibits Human Breast Cancer Cell Line MDA-MB231 Proliferation and Metastasis

  • Lu, Jun;Jin, Mu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5577-5582
    • /
    • 2014
  • Objective: To observe the effects of metastasis-associated tumor gene family 2 (MTA2) depletion on human breast cancer cell proliferation and metastasis. Methods: A short-hairpin RNA targeting MTA2 was chemically synthesized and transfected into a lentivirus to construct Lv-shMTA2 for infection into the MDA-MB231 human breast cancer cell line. At 48 hours after infection cells were harvested and mRNA and protein levels of MTA2 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell viability and metastasis were assessed by CCK-8, wound-healing assay and Transwell assay, respectively. In addition, a xenograft model of human breast cancer was constructed to investigate cancerous cell growth and capacity for metastasis. Results: After infection with Lv-shMTA2, mRNA and protein levels of MTA2 was significantly reduced (p<0.05) and MDA-MB231 cell proliferation and metastasis were inhibited (p<0.05). In addition, mean tumor size was smaller than that in control group nude mice (p<0.05) and numbers of metastatic deposits in lung were lower than in control group mice (p<0.05). Depletion of MTA2 affected MMP-2 and apoptosis-related protein expression. Conclusions: For the first time to our knowledge we showed that MTA2 depletion could significantly inhibit human breast cancer cell growth and metastasis, implying that MTA2 might be involved in the progression of breast cancer. The role of MTA2 in breast cancer growth and metastasis might be linked with regulation of matrix metalloproteinase and apoptosis.

Extracellular acidity enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via DR5 in gastric cancer cells

  • Hong, Ran;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.513-523
    • /
    • 2018
  • The tumor microenvironment greatly influences cancer cell characteristics, and acidic extracellular pH has been implicated as an essential factor in tumor malignancy and the induction of drug resistance. Here, we examined the characteristics of gastric carcinoma (GC) cells under conditions of extracellular acidity and attempted to identify a means of enhancing treatment efficacy. Acidic conditions caused several changes in GC cells adversely affecting chemotherapeutic treatment. Extracellular acidity did inhibit GC cell growth by inducing cell cycle arrest, but did not induce cell death at pH values down to 6.2, which was consistent with down-regulated cyclin D1 and up-regulated p21 mRNA expression. Additionally, an acidic environment altered the expression of atg5, HSPA1B, collagen XIII, collagen XXAI, slug, snail, and zeb1 genes which are related to regulation of cell resistance to cytotoxicity and malignancy, and as expected, resulted in increased resistance of cells to multiple chemotherapeutic drugs including etoposide, doxorubicin, daunorubicin, cisplatin, oxaliplatin and 5-FU. Interestingly, however, acidic environment dramatically sensitized GC cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Consistently, the acidity at pH 6.5 increased mRNA levels of DR4 and DR5 genes, and also elevated protein expression of both death receptors as detected by immunoblotting. Gene silencing analysis showed that of these two receptors, the major role in this effect was played by DR5. Therefore, these results suggest that extracellular acidity can sensitize TRAIL-mediated apoptosis at least partially via DR5 in GCs while it confers resistance to various type of chemotherapeutic drugs.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF

Small non-coding RNA를 발현하는 형질전환 벼의 환경위해성 평가 방법 (Methods for environmental risk assessment of rice transgenic plants expressing small non-coding RNA)

  • 진병준;전현진;조현민;이수현;최철우;정욱헌;백동원;한창덕;김민철
    • Journal of Plant Biotechnology
    • /
    • 제46권3호
    • /
    • pp.205-216
    • /
    • 2019
  • Since the RNA interference (RNAi) had been discovered in many organisms, small non-coding RNA-mediated gene silencing technology, including RNAi have been widely applied to analysis of gene function, as well as crop improvement. Despite the usefulness of RNAi technology, RNAi transgenic crops have various potential environmental risks, including off-target and non-target effects. In this study, we developed methods that can be effectively applied to environmental risk assessment of RNAi transgenic crops and verified these methods in 35S::dsRNAi_eGFP rice transgenic plant we generated. Off-target genes, which can be non-specifically suppressed by the expression of dsRNAi_eGFP, were predicted by using the published web tool, pssRNAit, and verified by comparing their expressions between wild-type (WT) and 35S::dsRNAi_eGFP transgenic rice. Also, we verified the non-target effects of the 35S:: dsRNAi_eGFP plant by evaluating horizontal and vertical transfer of small interfering RNAs (siRNAs) produced in the 35S::dsRNAi_eGFP plant into neighboring WT rice and rhizosphere microorganisms, respectively. Our results suggested that the methods we developed, could be widely applied to various RNAi transgenic crops for their environmental risk assessment.

TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells

  • Choi, Jae Hyouk;Yarishkin, Oleg;Kim, Eunju;Bae, Yeonju;Kim, Ajung;Kim, Seung-Chan;Ryoo, Kanghyun;Cho, Chang-Hoon;Hwang, Eun Mi;Park, Jae-Yong
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.4.1-4.13
    • /
    • 2018
  • Two-pore domain $K^+$ (K2P) channels have been shown to modulate neuronal excitability. The physiological role of TWIK-1, the first identified K2P channel, in neuronal cells is largely unknown, and we reported previously that TWIK-1 contributes to the intrinsic excitability of dentate gyrus granule cells (DGGCs) in mice. In the present study, we investigated the coexpression of TWIK-1 and TASK-3, another K2P member, in DGGCs. Immunohistochemical staining data showed that TASK-3 proteins were highly localized in the proximal dendrites and soma of DGGCs, and this localization is similar to the expression pattern of TWIK-1. TWIK-1 was shown to associate with TASK-3 in DGGCs of mouse hippocampus and when both genes were overexpressed in COS-7 cells. shRNA-mediated gene silencing demonstrated that TWIK-1/TASK-3 heterodimeric channels displayed outwardly rectifying currents and contributed to the intrinsic excitability of DGGCs. Neurotensin-neurotensin receptor 1 (NT-NTSR1) signaling triggered the depolarization of DGGCs by inhibiting TWIK-1/TASK-3 heterodimeric channels, causing facilitated excitation of DGGCs. Taken together, our study clearly showed that TWIK-1/TASK-3 heterodimeric channels contribute to the intrinsic excitability of DGGCs and that their activities are regulated by NT-NTSR1 signaling.

Suppression of MED19 expression by shRNA induces inhibition of cell proliferation and tumorigenesis in human prostate cancer cells

  • Cui, Xingang;Xu, Danfeng;Lv, Chao;Qu, Fajun;He, Jin;Chen, Ming;Liu, Yushan;Gao, Yi;Che, Jianping;Yao, Yacheng;Yu, Hongyu
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.547-552
    • /
    • 2011
  • MED19 is a member of the Mediator that plays a key role in the activation and repression of signal transduction or the regulation of transcription in carcinomas. To tested the functional role of MED19 in human prostate cancer, we downregulated MED19 expression in prostate cancer cells (PC-3 and DU145) by lentivirus-mediated short hairpin (shRNA), and analyzed the effect of inhibition of MED19 on prostate cancer cell proliferation and tumorigenesis. The in vitro prostate cancer cell proliferation, colony formation, and in vivo tumor growth in nude mice xenografts was significantly reduced after the downregulation of MED19. Knockdown of MED19 caused S-phase arrest and induced apoptosis via modulation of Bid and Caspase 7. It was suggested that MED19 serves as a novel proliferation regulator that promotes growth of prostate cancer cells.

Structure and Function of NtCDPK1, a Calcium-dependent Protein Kinase in Tobccco

  • Yoon, Gyeong-Mee;Lee, Sang-Sook;Pai, Hyun-Sook
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.79-82
    • /
    • 2000
  • We have isolated a cDNA encoding a calcium-dependent protein kinase (CDPK) in Nicotiana tabacum, which was designated NtCDPK1. Accumulation of the NtCDPK1 mRNA was stimulated by various stimuli, including phytohormones, CaCl$_2$ wounding, fungal elicitors, chitin and methyl jasmonate. The NtCDPK1 gene encodes a functional Ser/Thr protein kinase of which phosphorylation activity is strongly induced by calcium. By analyzing expression of the NtCDPK1-GFP fusion protein and by immunoblotting with antibody which reacts with NtCDPK1, we found that NtCDPK1 is localized in membrane and nucleus in plant cells. Silencing expression of the NtCDPK1 transgene resulted in marked decrease of lateral root development in the transgenic tobacco plants. Yeast two hybrid screening using NtCDPK1 as a bait identified a tobacco homologue of proteasome regulatory subunit 21D7, designated Nt21D7. The 21D7 mRNA has been shown to be predominantly expressed in proliferating tissues in the cell cycledependent manner in carrot. The recombinant NtCDPK1 protein associated with Nt21D7 in vitro, and could phosphorylate the Nt21D7 protein in vitro in the presence of calcium, suggesting that Nt21D7 protein is a natural substrate of NtCDPK1 in tobacco. These results suggest that NtCDPK1 may regulate tell proliferation processes, such as lateral root formation, by regulating specificity and/or activity of proteasome-mediated protein degradation pathway.

  • PDF

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • 제45권10호
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes

  • Yeo, Hyunjin;Lee, Jeong Yeon;Kim, JuHwan;Ahn, Sung Shin;Jeong, Jeong You;Choi, Ji Hye;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.323-328
    • /
    • 2020
  • Matrix metalloproteinase 1 (MMP-1), a calcium-dependent zinccontaining collagenase, is involved in the initial degradation of native fibrillar collagen. Tissue necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that is rapidly produced by dermal fibroblasts, monocytes/macrophages, and keratinocytes and regulates inflammation and damaged-tissue remodeling. MMP-1 is induced by TNFα and plays a critical role in tissue remodeling and skin aging processes. However, the regulation of the MMP1 gene by TNFα is not fully understood. We aimed to find additional cis-acting elements involved in the regulation of TNFα-induced MMP1 gene transcription in addition to the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP1) sites. Assessments of the 5'-regulatory region of the MMP1 gene, using a series of deletion constructs, revealed the requirement of the early growth response protein 1 (EGR-1)-binding sequence (EBS) in the proximal region for proper transcription by TNFα. Ectopic expression of EGR-1, a zinc-finger transcription factor that binds to G-C rich sequences, stimulated MMP1 promoter activity. The silencing of EGR-1 by RNA interference reduced TNFα-induced MMP-1 expression. EGR-1 directly binds to the proximal region and transactivates the MMP1 gene promoter. Mutation of the EBS within the MMP1 promoter abolished EGR-1-mediated MMP-1 promoter activation. These data suggest that EGR-1 is required for TNFα-induced MMP1 transcriptional activation. In addition, we found that all three MAPKs, ERK1/2, JNK, and p38 kinase, mediate TNFα-induced MMP-1 expression via EGR-1 upregulation. These results suggest that EGR-1 may represent a good target for the development of pharmaceutical agents to reduce inflammation-induced MMP-1 expression.