Browse > Article
http://dx.doi.org/10.1038/s12276-018-0172-4

TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells  

Choi, Jae Hyouk (Korea Institute of Science and Technology (KIST), Center for Functional Connectomics)
Yarishkin, Oleg (Korea Institute of Science and Technology (KIST), Center for Functional Connectomics)
Kim, Eunju (Korea Institute of Science and Technology (KIST), Center for Functional Connectomics)
Bae, Yeonju (School of Biosystem and Biomedical Science, College of Health Science, Korea University)
Kim, Ajung (Korea Institute of Science and Technology (KIST), Center for Functional Connectomics)
Kim, Seung-Chan (Korea Institute of Science and Technology (KIST), Center for Functional Connectomics)
Ryoo, Kanghyun (School of Biosystem and Biomedical Science, College of Health Science, Korea University)
Cho, Chang-Hoon (School of Biosystem and Biomedical Science, College of Health Science, Korea University)
Hwang, Eun Mi (Korea Institute of Science and Technology (KIST), Center for Functional Connectomics)
Park, Jae-Yong (School of Biosystem and Biomedical Science, College of Health Science, Korea University)
Publication Information
Experimental and Molecular Medicine / v.50, no.11, 2018 , pp. 4.1-4.13 More about this Journal
Abstract
Two-pore domain $K^+$ (K2P) channels have been shown to modulate neuronal excitability. The physiological role of TWIK-1, the first identified K2P channel, in neuronal cells is largely unknown, and we reported previously that TWIK-1 contributes to the intrinsic excitability of dentate gyrus granule cells (DGGCs) in mice. In the present study, we investigated the coexpression of TWIK-1 and TASK-3, another K2P member, in DGGCs. Immunohistochemical staining data showed that TASK-3 proteins were highly localized in the proximal dendrites and soma of DGGCs, and this localization is similar to the expression pattern of TWIK-1. TWIK-1 was shown to associate with TASK-3 in DGGCs of mouse hippocampus and when both genes were overexpressed in COS-7 cells. shRNA-mediated gene silencing demonstrated that TWIK-1/TASK-3 heterodimeric channels displayed outwardly rectifying currents and contributed to the intrinsic excitability of DGGCs. Neurotensin-neurotensin receptor 1 (NT-NTSR1) signaling triggered the depolarization of DGGCs by inhibiting TWIK-1/TASK-3 heterodimeric channels, causing facilitated excitation of DGGCs. Taken together, our study clearly showed that TWIK-1/TASK-3 heterodimeric channels contribute to the intrinsic excitability of DGGCs and that their activities are regulated by NT-NTSR1 signaling.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu, C. D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789-798 (2002).   DOI
2 Kim, E. et al. Enhancement of TREK1 channel surface expression by proteinprotein interaction with beta-COP. Biochem. Biophys. Res. Commun. 395, 244-250 (2010).   DOI
3 Monglial, L. A., Esposito, M. S., Lombradi, G. & Schinder, A. F. Reliable activation of immature neurons in the adult hippocampus. PLoS ONE 4, e5320 (2009).   DOI
4 Czirjak, G. & Enyedi, P. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277, 5426-5432 (2002).   DOI
5 Lengyel, M., Czirjak, G. & Enyedi, P. Formation of functional heterodimers by TREK-1 and TREK-2 two-pore domain potassium channel subunits. J. Biol. Chem. 291, 13649-13661 (2016).   DOI
6 Kadiri, N., Rodeau, J. L., Schlichter, R. & Hugel, S. Neurotensin inhibits background K+channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur. J. Neurosci. 34, 1230-1240 (2011).   DOI
7 Plant, L. D., Rajan, S. & Goldstein, S. A. K2P channels and their protein partners. Curr. Opin. Neurobiol. 15, 326-333 (2005).   DOI
8 Karschin, C. et al. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol. Cell Neurosci. 18, 632-648 (2001).   DOI
9 Miller, A. N. & Long, S. B. Crystal structure of the human two-pore domain potassium channel K2P1. Science 335, 432-436 (2012).   DOI
10 Lesage, F. et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J. 15, 6400-6407 (1996).   DOI
11 Hsu, D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog. Brain Res. 163, 601-613 (2007).
12 Jonas, P. & Lisman, J. Structure, function, and plasticity of hippocampal dentate gyrus microcircuits. Front. Neural Circuits 8, 2013-2014 (2014).
13 Kesner, R. P. An analysis of the dentate gyrus function. Behav. Brain Res. 254, 1-7 (2013).   DOI
14 Pelaprat, D. Interactions between neurotensin receptors and G proteins. Peptides 27, 2476-2487 (2006).   DOI
15 Alexander, M. J. et al. Distribution of neurotensin/neuromedin N mRNA in rat forebrain: unexpected abundance in hippocampus and subiculum. Proc. Natl Acad. Sci. USA 86, 5202-5206 (1989).   DOI
16 Sakamoto, N. et al. Neurotensin immunoreactivity in the human cingulate gyrus, hippocampal subiculum and mammillary bodies. Its potential role in memory processing. Brain Res. 375, 351-356 (1986).   DOI
17 Hermans, E. & Maloteaux, J. M. Mechanisms of regulation of neurotensin receptors. Pharmacol. Ther. 79, 89-104 (1998).   DOI
18 Caceda, R., Kinkead, B. & Nemeroff, C. B. Neurotensin: role in psychiatric and neurological diseases. Peptides 27, 2385-2404 (2006).   DOI
19 Boules, M., Li, Z., Smith, K., Fredrickson, P. & Richelson, E. Diverse roles of neurotensin agonists in the central nervous system. Front. Endocrinol. 4, 36 (2013).
20 Houck, B. D. & Person, A. L. Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex. J. Comp. Neurol. 523, 2254-2271 (2015).   DOI
21 Enyedi, P. & Czirjak, G. Molecular background of leak K+currents: two-pore domain potassium channels. Physiol. Rev. 90, 559-605 (2010).   DOI
22 Lesage, F. et al. TWIK-1, a ubiquitous human weakly inward rectifying $K^+$ channel with a novel structure. EMBO J. 15, 1004-1011 (1996).   DOI
23 Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H. & Goldstein, S. A. Sumoylation silences the plasma membrane leak $K^+$ channel K2P1. Cell 121, 37-47 (2005).   DOI
24 Feliciangeli, S. et al. Potassium channel silencing by constitutive endocytosis and intracellular sequestration. J. Biol. Chem. 285, 4798-4805 (2010).   DOI
25 Feliciangeli, S. et al. Does sumoylation control K2P1/TWIK1 background $K^+$ channels? Cell 130, 563-569 (2007).   DOI
26 Plant, L. D., Zuniga, L., Araki, D., Marks, J. D. & Goldstein, S. A. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci. Signal. 5, ra84 (2012).
27 Plant, L. D. et al. One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proc. Natl Acad. Sci. USA 107, 10743-10748 (2010).   DOI
28 Lesage, F. et al. The structure, function and distribution of the mouse TWIK-1 $K^+$ channel. FEBS Lett. 402, 28-32 (1997).   DOI
29 Talley, E. M., Solorzano, G., Lei, Q., Kim, D. & Bayliss, D. A. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J. Neurosci. 21, 7491-7505 (2001).   DOI
30 Arrighi, I., Lesage, F., Scimeca, J. C., Carle, G. F. & Barhanin, J. Structure, chromosome localization, and tissue distribution of the TWIK $K^+$ channel gene. FEBS Lett. 425, 310-316 (1998).   DOI
31 Aller, M. I. & Wisden, W. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 151, 1154-1172 (2008).   DOI
32 Ryoo, K. & Park, J. Y. Two-pore domain potassium channels in astrocytes. Exp. Neurobiol. 25, 222-232 (2016).   DOI
33 Deng, P. Y., Poudel, S. K., Rojanathammanee, L., Porter, J. E. & Lei, S. Serotonin inhibits neuronal excitability by activating two-pore domain k+channels in the entorhinal cortex. Mol. Pharmacol. 72, 208-218 (2007).   DOI
34 Yarishkin, O. et al. TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus. Mol. Brain 7, 80 (2014).   DOI
35 Hwang, E. M. et al. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat. Commun. 5, 3227 (2014).   DOI
36 Zhang, H. et al. Neurotensinergic exciatation of dentate gyrus granule cells via G q-coupled inhibition of TASK-3 channels. Cereb. Cortex 26, 977-990 (2016).   DOI
37 Arruda-Carvalho, M. et al. Conditional deletion of ${\alpha}$-CaMKII impairs integration of adult-generated granule cells into dentate gyrus circuits and hippocampusdependent learning. J. Neurosci. 34, 11919 (2014).   DOI
38 Ohira, K. et al. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus. Mol. Brain 3, 26 (2010).   DOI