• 제목/요약/키워드: RNA-binding proteins

검색결과 285건 처리시간 0.03초

Bacillus circulans F-2의 NaCl 의존성 amylase 유전자의 DNA 염기배열 결정 (NaCl-dependent Amylase Gene From Badillus circulans F-2 Its Nucleotide Sequence)

  • 김철호;권석태;타니구치하지메;마루야마요시하루
    • 한국미생물·생명공학회지
    • /
    • 제18권3호
    • /
    • pp.309-316
    • /
    • 1990
  • Bacillus circulans F-2의 생산하는 NaCl 의존성 amylase(NaCl-dependent amylase) 유전자를 함유하는 1795bp의 DNA 염기배열을 결정하였다. 본 유전자의 ORF는 총염기수 1005bp(335 아미노산)로 구성되며, 분자량 38,006의 amylase의 분자량 약 35,000과 일치하였다. 본 유전자의 상류영역(upstream region)에는 고초균(Bacillus subtiis)의 전형적인 전사발현영역(transcriptional region)과 상보적인 DNA역역이 존재하였다. 성숙단백질의 N-말단측 아미노산 배열은 Ala-Ser-Lys-Val-Gly이며, 분비에 필요한 20개의 signal 아미노산 배열을 갖는 전형적인 분비 단백질임이 확인 되었다. 한편 다른 amylase들과 비교결과, smylase 활성발현과 밀접히 관련되 있는 4개 부위의 상보성영역(homologous region)을 가지고 있었다.

  • PDF

Role of miR-511 in the Regulation of OATP1B1 Expression by Free Fatty Acid

  • Peng, Jin Fu;Liu, Li;Guo, Cheng Xian;Liu, Shi Kun;Chen, Xiao Ping;Huang, Li Hua;Xiang, Hong;Huang, Zhi Jun;Yuan, Hong;Yang, Guo Ping
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.400-406
    • /
    • 2015
  • MicroRNAs (miRNAs) are a family of non-coding RNA that are able to adjust the expression of many proteins, including ATP-binding cassette transporter and organic cation transporter. We sought to evaluate the effect of miR-511 on the regulation of OATP1B1 expression by free fatty acids. When using free fatty acids to stimulate Chang liver cells, we found that the expression of miR-511 increased significantly while the expression of OATP1B1 decreased. We also proved that SLCO1B1 is the target gene of miR-511 with a bioinformatics analysis and using the dual luciferase reporter assay. Furthermore, the expressions of SLCO1B1 and OATP1B1 decreased if transfecting Chang liver cells with miR-511, but did not increase when transfecting the inhibitors of miR-511 into steatosis cells. Our study indicates that miR-511 may play an important role in the regulation of OATP1B1 expression by free fatty acids.

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

Heterologous Expression of Streptomyces albus Genes Linked to an Integrating Element and Activation of Antibiotic Production

  • Kwon, Hyung-Jin;Lee, Soon-Youl;Hong, Soon-Kwang;Park, Uhn-Mee;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.488-497
    • /
    • 1999
  • Probing Streptomyces albus ATCC 21838 chromosomal DNA with a proline tRNA sequence resulted in an isolation of a putative integrating element in the 6.4-kb EcoRI fragment. It was found that Streptomyces lividans TK-24 transformed with a cloned DNA fragment on a multicopy plasmid, produced a higher level of spore pigment and mycelial red pigment on a regeneration agar. Furthermore, the transformant S. lividans TK-24 produced a markedly increased level of undecylprodigiosin in a broth culture. A nucleotide sequence analysis of the cloned region revealed several open reading frames homologous to the integrases of integrating plasmids or temperate bacteriophages, signal-transducing regulatory proteins with a conserved ATP-binding domain, oxidoreductases ($\beta$-ketoacyl reductase), and an AraC-like transcriptional regulator. To examine the effect on antibiotic production, each coding region was overexpressed separately from the other genes in the region in S. lividans TK-24 with; pJHS3044 for the expression of the signal-transducing regulatory protein homologue, pJHS3045 for the homologue of oxidoreductase, and pJHS3051 for the homologue of the AraC-like transcriptional regulator. Phenotypic studies of S. lividans TK-24 strains harboring plasmids for the overexpression of individual genes suggested the following effects of the genes on antibiotic production: The oxidoreductase homologue stimulated the production of actinorhodin and undecylprodigiosin, which was influenced by the culture conditions; the homologue of the AraC-like transcriptional regulator was the most effective factor in antibiotic production within all the culture conditions tested; the signal-transducing regulatory protein homologue repressed the effect due to the homologue of the AraC-like transcriptional regulator, however, the antibiotic production was derepressed upon entering the stationary phase.

  • PDF

Comparative Genome Analysis of Rathayibacter tritici NCPPB 1953 with Rathayibacter toxicus Strains Can Facilitate Studies on Mechanisms of Nematode Association and Host Infection

  • Park, Jungwook;Lee, Pyeong An;Lee, Hyun-Hee;Choi, Kihyuck;Lee, Seon-Woo;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.370-381
    • /
    • 2017
  • Rathayibacter tritici, which is a Gram positive, plant pathogenic, non-motile, and rod-shaped bacterium, causes spike blight in wheat and barley. For successful pathogenesis, R. tritici is associated with Anguina tritici, a nematode, which produces seed galls (ear cockles) in certain plant varieties and facilitates spread of infection. Despite significant efforts, little research is available on the mechanism of disease or bacteria-nematode association of this bacterium due to lack of genomic information. Here, we report the first complete genome sequence of R. tritici NCPPB 1953 with diverse features of this strain. The whole genome consists of one circular chromosome of 3,354,681 bp with a GC content of 69.48%. A total of 2,979 genes were predicted, comprising 2,866 protein coding genes and 49 RNA genes. The comparative genomic analyses between R. tritici NCPPB 1953 and R. toxicus strains identified 1,052 specific genes in R. tritici NCPPB 1953. Using the BlastKOALA database, we revealed that the flexible genome of R. tritici NCPPB 1953 is highly enriched in 'Environmental Information Processing' system and metabolic processes for diverse substrates. Furthermore, many specific genes of R. tritici NCPPB 1953 are distributed in substrate-binding proteins for extracellular signals including saccharides, lipids, phosphates, amino acids and metallic cations. These data provides clues on rapid and stable colonization of R. tritici for disease mechanism and nematode association.

Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants

  • Yoo, Sung-Je;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1124-1136
    • /
    • 2019
  • Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased $Ca^{2+}$ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.

천연 기능성 물질(Functional Ingredients)을 활용한 LDL 수용체과(科) 조절과 지질항상성 개선 (Improvement of Lipid Homeostasis Through Modulation of Low-density Lipoprotein Receptor Family by Functional Ingredients)

  • 정정호;류융선;박기범;고광웅
    • 산업식품공학
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2017
  • Dyslipidemia, defined as elevated triglyceride (TG), total- and LDL-C, and/or decreased HDL-C levels, is considered a principal risk factor for cardiovascular disease. The low-density lipoprotein receptor (LDLR) family has been considered a key player in the prevention of dyslipidemia. The LDLR family consists of cytoplasmic membrane proteins and plays an important role not only in ligand-receptor binding and uptake, but also in various cell signaling pathways. Emerging reports state that various functional ingredients dynamically modulate the function of the LDLR family. For instance, oats stimulated the LDLR function in vivo, resulting in decreased body weight and improved serum lipid profiles. The stimulation of LRP6 by functional ingredients in vitro activated the Wnt/${\beta}-catenin$ pathway, subsequently suppressing the intracellular TG via inhibition of SREBP1, $PPAR{\gamma}$, and $C/EBP{\alpha}$. Furthermore, the extract of Cistanchetubulosa enhanced the expression of the mRNA of VLDLR, followed by a reduction in the serum cholesterol level. In addition, fermented soy milk diminished TG and total cholesterol levels while increasing HDL-C levels via activation of LRP1. To summarize, modulating the function of the LDLR family by diverse functional ingredients may be a potent therapeutic remedy for the treatment of dyslipidemia and cardiovascular diseases.

Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein

  • Kim, Jinsoo;Hwang, Seok Young;Kim, Dongbum;Kim, Minyoung;Baek, Kyeongbin;Kang, Mijeong;An, Seungchan;Gong, Junpyo;Park, Sangkyu;Kandeel, Mahmoud;Lee, Younghee;Noh, Minsoo;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.427-434
    • /
    • 2022
  • The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

The correlation of Septin4 gene expression with sperm quality, DNA damage, and oxidative stress level in infertile patients

  • Rahil Jannatifar;Hamid Piroozmanesh;Fahimeh Naghi Jalalabadi;Hamid Reza Momeni
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.518-525
    • /
    • 2023
  • Septin4 belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. Since, Septin4 is expressed specifically in the testis, we aimed to determine the association between Septin4 gene expression with sperm quality, DNA damage, and stress oxidative level in infertile patients. The present study included 60 semen samples that grouped into three groups: normozoospermia (n=20), asthenozoospermia (n=20), astheno-teratozoospermia (n=20). Initially, semen parameters were analyzed by using the World Health Organization protocol. The mRNA expression of Septin4 in sperm was examined using reverse transcription-polymerase chain reaction. Oxidative stress markers, i.e., total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde, were determined by ELISA kit. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm mitochondrial membrane potential (MMP). However, it showed significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels. In conclusion, Septin4 gene expression provides clinical useful information for the diagnosis of male infertility. It might be a marker for discrimination between fertile and infertile patients. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm MMP. However, it shows significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels.