• 제목/요약/키워드: RNA-Seq

검색결과 283건 처리시간 0.027초

Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing

  • Jeon, Sol A;Park, Jong Lyul;Kim, Jong-Hwan;Kim, Jeong Hwan;Kim, Yong Sung;Kim, Jin Cheon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.32.1-32.6
    • /
    • 2019
  • Currently, Illumina sequencers are the globally leading sequencing platform in the next-generation sequencing market. Recently, MGI Tech launched a series of new sequencers, including the MGISEQ-2000, which promise to deliver high-quality sequencing data faster and at lower prices than Illumina's sequencers. In this study, we compared the performance of two major sequencers (MGISEQ-2000 and HiSeq 4000) to test whether the MGISEQ-2000 sequencer delivers high-quality sequence data as suggested. We performed RNA sequencing of four human colon cancer samples with the two platforms, and compared the sequencing quality and expression values. The data produced from the MGISEQ-2000 and HiSeq 4000 showed high concordance, with Pearson correlation coefficients ranging from 0.98 to 0.99. Various quality control (QC) analyses showed that the MGISEQ-2000 data fulfilled the required QC measures. Our study suggests that the performance of the MGISEQ-2000 is comparable to that of the HiSeq 4000 and that the MGISEQ-2000 can be a useful platform for sequencing.

Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle

  • Yoon, Joon;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.1044-1051
    • /
    • 2019
  • Objective: Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. Methods: We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. Results: As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. Conclusion: In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Identification of a novel immune-related gene in the immunized black soldier fly, Hermetia illucens (L.)

  • Jung, Seong-Tae;Goo, Tae-Won;Kim, Seong Ryul;Choi, Gwang-Ho;Kim, Sung-Wan;Nga, Pham Thi;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제36권2호
    • /
    • pp.25-30
    • /
    • 2018
  • The larvae of Hermetia. illucens have a high probability of coming into contact with microorganisms such as bacteria and fungi. Therefore, the survival of H. illucens is primarily the protection of their own against microbial infection. This effect depends on the development of the innate immune system. Antimicrobial Peptides (AMPs) exhibit antimicrobial activity against other bacterial strains and can provide important data to understand the basis of the innate immunity of H. illucens. In this study, we injected larvae with Enterococcus. faecalis (gram-positive bacteria) and Serratia. marcescens as (gram-negative bacteria) to test the hypothesis that H. illucens is protected from infection by its immune-related gene expression repertoire. To identify the inducible immune-related genes, we performed and cataloged the transcriptomes by RNA-Seq analysis. We compared the transcriptomes of whole larvae and obtained a DNA fragment of 465 bp including the poly (A) tail by RACE as a novel H. illucens immune-related gene against bacteria. A novel target mRNA expression was higher in immunized larvae with E. faecalis and S. marcescens groups than non-immunized group. We expect our study to provide evidence that the global RNA-Seq approach allowed for the identification of a gene of interest which was further analyzed by quantitative RT-PCR, together with genes chosen from the available literature.

Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639

  • Park, Jungwook;Lee, Areum;Lee, Hyun-Hee;Park, Inmyoung;Seo, Young-Su;Cha, Jaeho
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1157-1167
    • /
    • 2018
  • Sulfolobus species can grow on a variety of organic compounds as carbon and energy sources. These species degrade glucose to pyruvate by the modified branched Entner-Doudoroff pathway. We attempted to determine the differentially expressed genes (DEGs) under sugar-limited and sugar-rich conditions. RNA sequencing (RNA-seq) was used to quantify the expression of the genes and identify those DEGs between the S. acidocaldarius cells grown under sugar-rich (YT with glucose) and sugar-limited (YT only) conditions. The functions and pathways of the DEGs were examined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time PCR (qRT-PCR) was performed to validate the DEGs. Transcriptome analysis of the DSM 639 strain grown on sugar-limited and sugar-rich media revealed that 853 genes were differentially expressed, among which 481 were upregulated and 372 were downregulated under the glucose-supplemented condition. In particular, 70 genes showed significant changes in expression levels of ${\geq}$ twofold. GO and KEGG enrichment analyses revealed that the genes encoding components of central carbon metabolism, the respiratory chain, and protein and amino acid biosynthetic machinery were upregulated under the glucose condition. RNA-seq and qRT-PCR analyses indicated that the sulfur assimilation genes (Saci_2197-2204) including phosphoadenosine phosphosulfate reductase and sulfite reductase were significantly upregulated in the presence of glucose. The present study revealed metabolic networks in S. acidocaldarius that are induced in a glucose-dependent manner, improving our understanding of biomass production under sugar-rich conditions.

LPS-Induced Modifications in Macrophage Transcript and Secretion Profiles Are Linked to Muscle Wasting and Glucose Intolerance

  • Heeyeon Ryu;Hyeon Hak Jeong;Seungjun Lee;Min-Kyeong Lee;Myeong-Jin Kim;Bonggi Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.270-279
    • /
    • 2024
  • Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.

Cell type-specific gene expression profiling in brain tissue: comparison between TRAP, LCM and RNA-seq

  • Kim, TaeHyun;Lim, Chae-Seok;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.388-394
    • /
    • 2015
  • The brain is an organ that consists of various cell types. As our knowledge of the structure and function of the brain progresses, cell type-specific research is gaining importance. Together with advances in sequencing technology and bioinformatics, cell type-specific transcriptome studies are providing important insights into brain cell function. In this review, we discuss 3 different cell type-specific transcriptome analyses i.e., Laser Capture Microdissection (LCM), Translating Ribosome Affinity Purification (TRAP)/RiboTag, and single cell RNA-Seq, that are widely used in the field of neuroscience. [BMB Reports 2015; 48(7): 388-394]

Multi-omics techniques for the genetic and epigenetic analysis of rare diseases

  • Yeonsong Choi;David Whee-Young Choi;Semin Lee
    • Journal of Genetic Medicine
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2023
  • Until now, rare disease studies have mainly been carried out by detecting simple variants such as single nucleotide substitutions and short insertions and deletions in protein-coding regions of disease-associated gene panels using diagnostic next-generation sequencing in association with patient phenotypes. However, several recent studies reported that the detection rate hardly exceeds 50% even when whole-exome sequencing is applied. Therefore, the necessity of introducing whole-genome sequencing is emerging to discover more diverse genomic variants and examine their association with rare diseases. When no diagnosis is provided by whole-genome sequencing, additional omics techniques such as RNA-seq also can be considered to further interrogate causal variants. This paper will introduce a description of these multi-omics techniques and their applications in rare disease studies.

NGS 기법을 활용한 전장게놈에서의 경제형질 관련 유전자 마커 발굴 (Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome)

  • 김정안;김희수
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1258-1267
    • /
    • 2014
  • 가축의 고 성장률, 강건성, 질병 저항성과 같은 경제적 형질을 발굴하는 것은 매우 중요한 과제이다. 이에 경제적 형질을 발굴하기 위한 방법으로 전통적으로 RFLP, AFLP와 같은 방법이 대두되었으며, 최근 NGS 기법이 발달함에 따라 이러한 경제적 형질을 전장게놈의 수준에서 발굴하려는 노력이 계속되고 있다. 하지만, NGS 기법의 경우 상대적으로 많은 연구 비용이 필요한 실정이다. 이를 극복하기 위한 노력으로써 RNA-seq, RAD-Seq, RRL, MSG, GBS 등과 같은 기법이 활용되고 있다. 본 논문에서는 NGS 기법을 기반으로 한 최근 연구 동향을 확인하고자 하며, 특히 최소의 연구 비용으로 최대의 효과를 낼 수 있는 연구 방법을 소개하는 데 초점을 맞추었다. 또한 이러한 연구 방법이 우수한 경제형질을 가진 가축을 선정하는 데 어떻게 적용될 수 있는지에 대해 토의하였다.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.