• Title/Summary/Keyword: RNA viruses

Search Result 247, Processing Time 0.023 seconds

Development of Real-time Quantitative PCR Assay based on SYBR Green I and TaqMan Probe for Detection of Apple Viruses (사과 바이러스 검정을 위한 SYBR Green I 및 TaqMan probe 기반의 real-time PCR 검사법 개발)

  • Heo, Seong;Chung, Yong Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.496-507
    • /
    • 2020
  • Virus infections of apples result in lowered commercial qualities such as low sugar content, weakened tree vigor, and malformed fruits. An effective way to control viruses is to produce virus-free plants based on the development of an accurate and sensitive diagnostic method. In this study, real-time PCR assays based on SYBR Green I and TaqMan probes were developed for detecting ASGV, ASPV, and ApMV viruses. These methods can detect and quantify 103 to 1011 RNA copies/μL of each virus separately. Compared with methods with two different dyes, the SYBR Green I-based method was efficient for virus detection as well as for assay using the TaqMan probe. Field tests demonstrated that real-time PCR methods developed in this study were applicable to high-throughput diagnoses for virus research and plant quarantine.

Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

  • Jeong, Joojin;Cho, Sang-Yun;Lee, Wang-Hyu;Lee, Kui-jae;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.219-225
    • /
    • 2015
  • The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX) was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India

  • Malik, Y.P.S.;Chakravarti, S.;Sharma, K.;Vaid, N.;Rajak, K.K.;Balamurugan, V.;Biswas, S.K.;Mondal, B.;Kataria, R.S.;Singh, R.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.1019-1025
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.

Transposable Genetic Elements, the Mechanisms of Transposition, and Their Uses in Genetic Studies (게놈 내 전이성 인자와 그 이동기구 및 이용)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.241-260
    • /
    • 1995
  • Transposons, present in the genomes of all living organisms, are genetic element that can change positions, or transpose, within the genome. Most genomes contain several kinds of transposable elements and the molecular details of the mechanisms by which these transposons move have recently been uncovered in many families of transposable elements. Transposition is brought about by an enzyme known as transposaese encoded by the autonomous transposon itself, but, in the unautonomous transposon lacking the gene encoding the transposase, movement occurs only at the presence of the enzyme encoded by the autonomous one. There are two types of transposition events, conservative and replicative transposition. In the former the transposon moves without replication, both strands of the DNA moving together from one place to the other while in the latter the transposition frequently involves DNA replication, so one copy of transposon remains at its original site as another copy insole to a new site. The insertion of transposon into a gene can prevent it expression whereas excision from the gene may restore the ability of the gene to be expressed. There are marked similarities between transposons and certain viruses having single stranded Plus (+) RNA genomes. Retrotransposons, which differ from the ordinary transposons in that they transpose via an RNA-intermediate, behave much like retroviruses and have a structure of integrated retrovial DNA when they are inserted to a new target site. An insertional mutagenesis called transposon-tagging is now being used in a number of plant species to isolate genes involved in developmental and metabolic processes which have been proven difficult to approach by the traditional methods. Attempts to device a transposon-tagging system based on the maize Ac for use in heterologous species have been made by many research workers.

  • PDF

Molecular Characterization of Chicken Toll-like Receptor 7

  • Chai, Han-Ha;Suk, Jae Eun;Lim, Dajeong;Lee, Kyung-Tai;Choe, Changyong;Cho, Yong-Min
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.105-115
    • /
    • 2015
  • Toll-like receptor 7 (TLR7) is critical for the triggering of innate immune response by recognizing the conserved molecular patterns of single-stranded RNA (ssRNA) viruses and mediated antigenic adaptive immunity. To understand how TLR7 distinguish pathogen-derived molecular patterns from the host self, it is essential to be able to identify TLR7 receptor interaction interfaces, such as active sites or R848-agonist binding sites. The functional interfaces of TLR7 can serve as targets for structure-based drug design in studying the TLR7 receptor's structure-function relationship. In contrast to mammalian TLR7, chicken TLR7 (chTLR7) is unknown for its important biological function. Therefore, it has been targeted to mediate contrasting evolutionary patterns of positive selection into non-synonymous SNPs across eleven species using TLR7 conservation patterns (evolutionary conserved and class-specific trace residues), where protein sequence differences to the TLR7 receptors of interest record mutation that have passed positive section across the species. In this study, we characterized the Lys609 residue on chTLR7-ECD homodimer interfaces to reflect the current tendency of evolving positive selection to be transfer into a stabilization direction of the R848-agonist/chTLR7-ECDs complex under the phylogenetically variable position across species and we suggest a potential indicator for contrasting evolutionary patterns of both the species TLR-ECDs.

The Protective Role of TLR3 and TLR9 Ligands in Human Pharyngeal Epithelial Cells Infected with Influenza A Virus

  • Han, Yan;Bo, Zhi-Jian;Xu, Ming-Yu;Sun, Nan;Liu, Dan-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • In this study we aim to extensively investigate the anti-influenza virus immune responses in human pharyngeal epithelial cell line (Hep-2) and evaluate the protective role of Toll-like receptor (TLR) ligands in seasonal influenza A H1N1 (sH1N1) infections in vitro. We first investigated the expression of the TLRs and cytokines genes in resting and sH1N1 infected Hep-2 cells. Clear expressions of TLR3, TLR9, interleukin (IL)-6, tumour necrosis factor (TNF)-${\alpha}$ and interferon (IFN)-${\beta}$ were detected in resting Hep-2 cells. After sH1N1 infection, a ten-fold of TLR3 and TLR9 were elicited. Concomitant with the TLRs activation, transcriptional expression of IL-6, TNF-${\alpha}$ and IFN-${\beta}$ were significantly induced in sH1N1-infected cells. Pre-treatment of cells with poly I:C (an analog of viral double-stranded RNA) and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide) resulted in a strong reduction of viral and cytokines mRNA expression. The results presented indicated the innate immune response activation in Hep-2 cells and affirm the antiviral role of Poly I:C and CpG-ODN in the protection against seasonal influenza A viruses.

Allexivirus Transmitted by Eriophyid Mites in Garlic Plants

  • Kang, Sang-Gu;Koo, Bong-Jin;Lee, Eun-Tag;Chang, Moo-Ung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1833-1840
    • /
    • 2007
  • Viruses in garlic plants (Allium sativum L.) have accumulated and evolved over generations, resulting in serious consequences for the garlic trade around the world. These viral epidemics are also known to be caused by aphids and eriophyid mites (Aceria tulipae) carrying Potyviruses, Carlaviruses, and Allexiviruses. However, little is known about viral epidemics in garlic plants caused by eriophyid mites. Therefore, this study investigated the infection of garlic plants with Allexiviruses by eriophyid mites. When healthy garlic plants were cocultured with eriophyid mites, the leaves of the garlic plants developed yellow mosaic strips and became distorted. In extracts from the eriophyid mites, Allexiviruses were observed using immunosorbent electron microscopy (ISEM). From an immunoblot analysis, coat proteins against an Allexivirus garlic-virus antiserum were clearly identified in purified extracts from collected viral-infected garlic plants, eriophyid mites, and garlic plants infected by eriophyid mites. A new strain of GarV-B was isolated and named GarV-B Korea isolate 1 (GarV-B1). The ORF1 and ORF2 in GarV-B1 contained a typical viral helicase, RNA-directed RNA polymerase (RdRp), and triple gene block protein (TGBp) for viral movement between cells. The newly identified GarV-B1 was phylogenetically grouped with GarV-C and GarV-X in the Allexivirus genus. All the results in this study demonstrated that eriophyid mites are a transmitter insect species for Allexiviruses.

Genetic sequence analysis of Porcine epidemic diarrhea virus (PEDV) detected from postweaning pigs in Korea (한국 이유자돈에서 검출된 돼지 유행성 설사 바이러스의 유전자 서열 분석)

  • Shin, Hyun-Geun;Kim, Yeong-Hun;Seo, Tae-Won;Han, Jeong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • Porcine epidemic diarrhea virus (PEDV), an enveloped single stranded RNA virus in the family Coronaviridae, causes acute viral enteric disease in piglets. Recently outbreaks of porcine epidemic diarrhea (PED) have been rare in Europe but frequent in Asia. In Korea, the increase of PED prevalence is showing specially in postweaning pigs. The purpose of this study was to investigate nucleotide sequence of nucleocapsid protein gene of PEDV field isolates from postweaning pigs in Korea and get more information about the viruses. A total of 15 postweaing pigs clinically suspected of PEDV infection by severe watery diarrhea and dehydration were used in this study. Viral RNA was extracted from small intestines and stools of the pigs. The N gene was amplified by nested RT-PCR, purificated, sequenced, analyzed and then compared with published sequences of other PEDV strains. Three PEDVs were isolated from the suspected postweaning pigs. The N gene of three PEDV field isolates consisted of 483 nucleotides. These PEDV field isolates showed nucleotide sequence homology range from 99.6% to 95% with Chinese strains, from 99.8% to 95.2% with Korean strains, from 97.3% to 95.7% with Japanese strains and from 96.5% to 95.7% with Belgium and British strains. The encoded pritein shared range from 98.8% to 95.6% with Chinese strains, from 99.4% to 95% with Korean strains, from 97.5% to 96.3% with Japanese strains, from 95.6% to 95% with Belgium and British strains. By phylogenetic tree analysis based on nucleotide sequence, three PEDV field isolates were clustered into two groups which were Chinese isolate groups and other Korean isolate groups. These results indicated that some of PEDV field isolates prevailing in Korean postweaning pigs may be associated with those of Chinese strains and other Korean strains.

Development of Diagnostic System to Black Queen Cell Virus(BQCV) Using Multi-point Detection (Multi-point PCR법을 이용한 Black Queen Cell Virus (BQCV) 검출법 개발)

  • Kim, Somin;Kim, Byounghee;Kim, Moonjung;Kim, Jungmin;Truong, A Tai;Kim, Seonmi;Yoon, Byoungsu
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • BQCV multi-point PCR was developed as a rapid multiplex detection method for BQCV, one of the viral pathogens of honeybees. It could detect BQCV specific genes qualitative as well as quantitative detection based on ultra-rapid PCR. Three primer pairs (RNA dependent RNA polymerase, capsid protein, 3C like protease) were specifically designed for accurate the detection and were optimized for minimizing the detection time and increasing the sensitivity. Our advanced diagnostic system have the accuracy by lowering the concern about the variation in the BQCV detection site. In addition, it should be an opportunity to identify mutations that are mixed with other viruses.

Potential harmful effects of viral hemorrhagic septicemia virus in mammals

  • Ho, Diem Tho;Kim, Nameun;Yun, Dongbin;Kim, Ki-Hong;Kim, Jae-Ok;Jang, Gwang Il;Kim, Do-Hyung
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.320-326
    • /
    • 2022
  • Most of the emerging diseases that threaten humans are caused by RNA viruses which are extremely mutable during evolution. The fish RNA virus, viral hemorrhagic septicemia virus (VHSV) can infect a broad range of aquatic animal hosts, but the transmissibility of VHSV to mammals has not been thoroughly investigated. Therefore, our study aimed to investigate the potential adverse effects of VHSV in mammals. Briefly, the survival of VHSV was determined using only minimum essential media (MEM-2) and mammalian SNU-1411 and hepa-1c1c7s cells at 15℃ and 37℃. Mice (Mus musculus, 27.3 ± 1.9 g) were intravenously injected with VHSV (2.37E+05 TCID50·mice-1) in triplicate. Clinical signs and survival rates were examined at 14 days post-challenge, and infection was confirmed in the surviving mice. The 50% tissue culture infective dose (TCID50) and polymerase chain reaction analysis were used to determine viral titers and the infection rate, respectively. The titer of VHSV suspended in MEM-2 at 15℃ was reduced by only one log after 8 days, whereas the virus maintained at 37℃ was inactivated 8 days post-inoculation (dpi). There were no recognizable cytopathic effects in either SNU-1411 or hepa-1c1c7s cells inoculated with VHSV at 15℃ and 37℃. VHSV in those cell lines at 37℃ was rapidly decreased and eventually inactivated at 12 dpi, whereas virus at 15℃ remained at low concentrations without replication. In vivo experiment showed that there were no signs of disease, mortality, or infection in VHSV-infected mice. The results of this study indicate that it is highly unlikely that VHSV can infect mammals including humans.