• Title/Summary/Keyword: RNA synthesis

Search Result 806, Processing Time 0.192 seconds

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

Melanin Synthesis Inhibitory Effect of Eriobotryae Folium Extracts & Eriobotryae Folium and Phreatic Water Mixture

  • Choi, Jae-Song;Park, Jung-Hwan;Koh, Young-Mee;Kwak, Jin-young;Ahn, Taek-Won
    • The Journal of Korean Medicine
    • /
    • v.38 no.4
    • /
    • pp.62-81
    • /
    • 2017
  • Objectives: As interests in the beauty of skin is growing continuously, more people are focusing on white and clean skin. Melanin is the major factor that determines skin color. The abnormal concentration of melanin causes various skin diseases such as vitiligo, freckles, and melasma. This study investigated the inhibitory effect of Eriobotryae Folium extracts (EF) with phreatic water (PW) on the melanin synthesis. Methods: The effect of EF on melanin synthesis was evaluated by using mouse melanoma cells (B16F10). To define the mechanisms, real-time PCR and western blot were used. We also evaluated the inhibitory effects of EF and PW on melanin synthesis by using HRM-2 melanin-possessing hairless mice. After UVB irradiation, melanin differences between the skin parts that were treated and untreated with EF and PW. Levels of mRNA were measured by real-time quantitative PCR and histological analysis of the dorsal skin was conducted by hematoxylin and eosin staining. Results: EF inhibited various mechanisms of melanogenesis, and the effect was increased when combined with PW. In vitro experiments have shown that EF inhibited the expressions of tyrosinase related protein-1 (TRP-1) mRNA, tyrosinase mRNA, microphthalmia-associated transcription factor (MITF) mRNA and the tyrosinase inhibitory activation, but it stimulated the extracellular regulated kinase (ERK) mRNA expression. In vivo experiments have shown that EF prevented melanogenesis in the mice dorsal skin and inhibited TRP-1 mRNA expression. Also these effects were increased when combined with PW. Conclusions: EF and PW might be a new and effective treatment for whitening and treating pigmentation of skin.

Synthesis of Japanese Encephalitis Virus in Porcine Kidney Stable Cells Observed by Fluorescent Antibody Technique and Autoradiography

  • Lee, Chong-Hoon;Fukai, Konosuke
    • The Journal of the Korean Society for Microbiology
    • /
    • v.3 no.1
    • /
    • pp.51-65
    • /
    • 1968
  • The site of the synthesis of Japanese encephalitis virus(JEV) in the actinomycin-treated and infecter PS Y15 cells(a porcine kidney stable cell line) was observed by the immunofluorescent antibody technique, acridine orange staining, and the autoradiographic analysis. In the parallel studies by immunofluorescent technique and acridine orange staining it the infected cells, Viral protein(as an antigen) and viral RNA were detected at the same site of cytoplasm. In the autoradiographic analysis, the cytoplasmic labeling of $^3H$-uridine was due to the synthesis of JEV-RNA, while the nucleolus and nucleus were not involved. In the autoradiographic studies on the secton of infected cells, the $^3H$-uridine was frequently incorporated around the cytoplasmic vacuoles. This localization of labeling agreed with the site of acridine orange positive granules. The results suggest that the syntheses of the viral RNA and viral protein occurred in the similar site of cytoplasm of the infected cells, and also the virus particles seem to be assembled in the sites of the viral RNA and protein syntheses.

  • PDF

Inhibition of Corticosterone-induced Muscle Protein Synthesis by the Anabolic Steroid Nandrolone Phenylpropionate in Female Rats (아나보릭스테로이드인 Nandrolone Phenylpropionate가 암컷 쥐에서 코티코스테론에 의해 야기된 근육단백질 쇠퇴와 근육단백질 합성율 감소에 미치는 영향)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.867-873
    • /
    • 1996
  • This study was undertaken to determine whether the anabolic steroid nandrolone phenylpropionate(NPP) can inhibit the muscle atrophy and reduction in muscle protein synthesis caused by glucocorticoids in female rates. Daily injections of 50mg/kg of corticosterone for eight days induced significant reductions in body weight gain and protein without affecting food intake. The mass, protein and RNA content, ratio of RNA to protein, and fractional rate of protein synthesis, measured in vivo, of gastrocnemius muscle were all significantly reduced by corticosterone treatement. Simultaneous administration of NPP at a dose of 10mg/kg with corticosteorne (50mg/kg) fully inhibited the reductions in the mass, protein and RNA content of gastrocnemius muscle, and body weight gain and protein with no alteration in food intake but the reduction in fractional rate of muscle protein syntheis was only partially prevented. The results indicate that the anabolic steroid nandrolone phenylpropionate is capable of preventing muscle atrophy in female rats treated with excess corticosterion.

  • PDF

Polyvalent Nanoparticle-oligonudleotide conjugates: Synthesis, Properties, and Biodiagnostic/Therapeutic Applications

  • Lee, Jae-Seung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Polyvalent nanoparticle-DNA conjugates exhibit a variety of unique features such as programmable assembly and disassembly, sharp melting transitons, intense optical properties, high stability, enhanced binding properties, and easy fabrication of the surface nature by chemical and physical modification. The unique properties of nanoparticle-DNA conjugates enable one to build up a number of versatile assay schemes for the detection of various targets. In addition, nanoparticle-RNA conjugates also demonstrate great promise of therapeutic applications in the context of RNA interference when combined with polymeric materials. In this presentation, representative examples of each aspect of nanoparticle-oligonucleotide conjugates will be discussed.

  • PDF

Expression and characterization of RNA-dependent RNA polymerase of Ectropis obliqua virus

  • Lin, Meijuan;Ye, Shan;Xiong, Yi;Cai, Dawei;Zhang, Jiamin;Hu, Yuanyang
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.284-290
    • /
    • 2010
  • Replication of positive-strand RNA virus is mediated by a virus-encoded RNA-dependent RNA polymerase (RdRp). To study the replication of Ectropis obliqua virus (EoV), a newly identified insect virus belonging to the family Iflaviradae, we expressed the RNA polymerase domain in Escherichia coli and purified it on a Ni-chelating HisTrap affinity column. It is demonstrated that EoV RdRp initiated RNA synthesis in a primer and poly (A)-dependent manner in vitro. Furthermore, the effect of primer concentration, temperature, metal ions ($Mg^{2+}$, $Mn^{2+}$, and $K^+$) on enzymatic activity were determined. Our study represented a first step towards understanding the mechanism of EoV replication.

Expression and Characterization of RNA-dependent RNA Polymerase of Dendrolimus punctatus Tetravirus

  • Zhou, Liang;Zhang, Jiamin;Wang, Xiaochun;Jiang, Hong;Yi, Fuming;Hu, Yuanyang
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.571-577
    • /
    • 2006
  • Dendrolimus punctatus tetravirus (DpTV) has been identified as a new member of the genus Omegatetravirus of the family Tetraviridae that may be related serologically to Nudaurelia capensis virus ($N{\omega}V$). To establish the function of DpTV RNA genome and to better understand the mechanism of viral replication, the putative RNA-dependent RNA polymerase (RdRp) domain has been cloned and expressed in Escherichia coli. The recombinant protein was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate viral RNA synthesis in a primer-independent manner but not by terminal nucleotidyle transferase activity in the presence of $Mg^{2+}$ and RNA template. Mutation of the GDD to GAA interferes with the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive.

In vitro Synthesis of Ribonucleic Acids by T7 RNA Polymerase That was Fast Purified with a Modified Procedure (변형된 방법으로 신속히 정제된 T7 RNA 중합효소를 이용한 리보핵산의 시험관 내 합성)

  • Kim Ki-Sun;Choi Woo-Hyung;Gong Soo-Jung;Jeon Sung-Jong;Kim Jae Hyun;Oh Sangtaek;Kim Dong-Eun
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.755-762
    • /
    • 2005
  • Biochemical amounts of RNA molecules can be synthesized in vitro, which is functionally equivalent or similar to those transcripts normally existing at extremely low levels in vivo. In this study we described a method for efficient preparation of pure T7 RNA polymerase from Escherichia coli strain BL21/pAR1219. The procedure, which used ammonium sulfate fractionation and preparative column chromatography on sephadex SP, was shown to be simple, rapid, and cost effective in comparison with other methods reported previously, Using the purified T7 RNA polymerase we were able to synthesize very long RNA transcript of 1.54 kb length, which is not feasible by conventional chemical synthesis. RNA molecule that was also synthesized by the purified T7 RNA polymerase, such as hammerhead ribozyme, retained its biochemical activity by cleaving the target RNA successfully in vitro. Thus, the procedure shown in this study can be useful to synthesize any length of RNA molecules in vitro in a simple and cost effective way for a variety of purposes.

Functional Analysis of the Residue 789 in Escherichia coli 16S rRNA and Development of a Method to Select Second-site Revertants (Escherichia coli 16S rRNA의 789 염기의 기능분석 및 이차복귀돌연변이체 발췌를 위한 방법 개발)

  • Kim Jong-Myung;Go Ha-Young;Song Woo-Seok;Ryou Sang-Mi;Lee Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.156-159
    • /
    • 2006
  • A base substitution was introduced at the position 789 in Escherichia coli 16S rRNA, which was previously identified as an invariant residue for ribosome function and the ability of the mutant ribosomes to translate chloramphenicol acetyltransfernse mRNA was measured by determining the degree of resistance to chloramphenicol of cells expressing these mutant ribosomes. As expected, mutant ribosomes containing a base sub-stitution at the position 789 showed significantly reduced protein-synthesis ability and to identify a functional role played by this residue in protein synthesis, we developed an efficient genetic method to select second-site revertants in 16S rRNA that restore protein-synthesis function to these mutant ribosomes.

Preparation Method for Escherichia coliS30 Extracts Completely Dependent upon tRNA Addition to Catalyze Cell-free Protein Synthesis

  • Ahn, Jin-Ho;Hwang, Mi-Yeon;Oh, In-Seok;Park, Kyung-Moon;Hahn, Geun-Hee;Choi, Cha-Yong;Kim, Dong-Myung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.420-424
    • /
    • 2006
  • A simple method for depleting E. coliS30 extracts of endogenous tRNA has been developed. An $ethanolamine-Sepharose^{(R)}$ column equilibrated with water selectively captured the tRNA molecules in E. coli S30 extracts. As a result, S30 extracts filtered through this column became completely dependent upon the addition of exogenous tRNA to mediate cell-free protein synthesis reactions. We anticipate that the procedures developed and described will be particularly useful for in vitro suppression reaction studies designed to introduce unnatural amino acids into protein molecules.