Browse > Article

Functional Analysis of the Residue 789 in Escherichia coli 16S rRNA and Development of a Method to Select Second-site Revertants  

Kim Jong-Myung (Department of Life Science, Chung-Ang University)
Go Ha-Young (Department of Life Science, Chung-Ang University)
Song Woo-Seok (Department of Life Science, Chung-Ang University)
Ryou Sang-Mi (Department of Life Science, Chung-Ang University)
Lee Kang-Seok (Department of Life Science, Chung-Ang University)
Publication Information
Korean Journal of Microbiology / v.42, no.2, 2006 , pp. 156-159 More about this Journal
Abstract
A base substitution was introduced at the position 789 in Escherichia coli 16S rRNA, which was previously identified as an invariant residue for ribosome function and the ability of the mutant ribosomes to translate chloramphenicol acetyltransfernse mRNA was measured by determining the degree of resistance to chloramphenicol of cells expressing these mutant ribosomes. As expected, mutant ribosomes containing a base sub-stitution at the position 789 showed significantly reduced protein-synthesis ability and to identify a functional role played by this residue in protein synthesis, we developed an efficient genetic method to select second-site revertants in 16S rRNA that restore protein-synthesis function to these mutant ribosomes.
Keywords
790 loop; instant evolution; rRNA; ribosome;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cannone, J. J., S. Subramanian, M.N. Schnare, J. R. Collett, L.M. D'Souza, Y. Du, B. Feng, N. Lin, L.V. Madabusi, K.M. Muller, N. Pande, Z. Shang, N. Yu, and R.R. Gutell. 2002. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2   DOI
2 Cech, T.R., A.J. Zaug, and P.J. Grabowski. 1981. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487-96   DOI   ScienceOn
3 Dahlberg, A.E. 1989. The functional role of ribosomal RNA in protein synthesis. Cell 57, 525-529   DOI   ScienceOn
4 Lee, K., C.A. Holland-Staley, and P.R. Cunningham. 1996. Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2, 1270- 1285
5 Moazed, D., R.R. Samaha, C. Gualerzi, and H.F. Noller. 1995. Specific protection of 16 S rRNA by translational initiation factors. J. Mol. Biol. 248, 207-210
6 Noller, H.F. 1991. Ribosomal RNA and translation. Ann. Rev. Biochem. 60, 191-227   DOI   ScienceOn
7 Lee, K., S. Varma, J. Santalucia Jr., and P.R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269, 732-743   DOI   ScienceOn
8 Clemons, W.M. Jr., J.L. May, B.T. Wimberly, J.P. McCutcheon, M. S. Capel, and V. Ramakrishnan. 1999. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 400, 833-40   DOI   ScienceOn
9 Moazed, D. and H.F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389-394   DOI   ScienceOn
10 Dinos, G., D.N. Wilson, Y. Teraoka, W. Szaflarski, P. Fucini, D. Kalpaxis, and K.H. Nierhaus. 2004. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol. Cell. 13, 113-24   DOI   ScienceOn
11 Lee, K., C.A. Holland-Staley, and P.R. Cunningham. 2001. Genetic approaches to studying protein synthesis: effects of mutations at $\psi$ 516 and A535 in Escherichia coli 16S rRNA. J. Nutr. 131, 2994S-3004S   DOI
12 Tapprich, W.E., D. J. Goss, and A.E. Dahlberg. 1989. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 86, 4927-4931
13 Szatkiewicz, J. P., H. Cho, S.-M. Ryou, J.-M. Kim, P. R. Cunningham, and K. Lee. 2006. Genetic analysis of a structural motif within the conserved 530 stem-loop of Escherichia coli 16S rRNA. J. Mocrobiol. Biotechnol. 16, 569-575   과학기술학회마을
14 Gutell, R.R., N. Larsen, and C.R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58, 10-26
15 Cate, J.H., M.M. Yusupov, G. Z. Yusupova, T.N. Earnest, and H. F. Noller. 1999. X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095-2104   DOI   ScienceOn
16 Moazed, D. and H.F. Noller. 1986. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47, 985-994   DOI   ScienceOn
17 Gram, H., L.A. Marconi, C.F. Barbas 3rd, T.A. Collet, R.A. Lerner, and A. S. Kang. 1992. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89, 3576-80
18 Higuchi, R. 1989. Using PCR to engineer DNA. p. 61-70. In PCR Technology (Erlich, H.A., ed.), Stockton Press, New York