• Title/Summary/Keyword: RNA sequencing

Search Result 1,160, Processing Time 0.024 seconds

Application of next generation sequencing (NGS) system for whole-genome sequencing of porcine reproductive and respiratory syndrome virus (PRRSV) (돼지생식기호흡기증후군바이러스(PRRSV)의 전장 유전체 염기서열(whole-genome sequencing) 분석을 위한 차세대 염기서열 분석법의 활용)

  • Moon, Sung-Hyun;Khatun, Amina;Kim, Won-Il;Hossain, Md Mukter;Oh, Yeonsu;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In the present study, fast and robust methods for the next generation sequencing (NGS) were developed for analysis of PRRSV full genome sequences, which is a positive sensed RNA virus with a high degree of genetic variability among isolates. Two strains of PRRSVs (VR2332 and VR2332-R) which have been maintained in our laboratory were used to validate our methods and to compare with the sequence registered in GenBank (GenBank accession no. EF536003). The results suggested that both of strains had 100% coverage with the reference; the VR2332 had the coverage depth from minimum 3 to maximum 23,012, for the VR2332-R from minimum 3 to maximum 41,348, and 22,712 as an average depth. Genomic data produced from the massive sequencing capacities of the NGS have enabled the study of PRRSV at an unprecedented rate and details. Unlike conventional sequence methods which require the knowledge of conserved regions, the NGS allows de novo assembly of the full viral genomes. Therefore, our results suggested that these methods using the NGS massively facilitate the generation of more full genome PRRSV sequences locally as well as nationally in regard of saving time and cost.

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.

Differentiation of Phytoplasmas Infecting Zizyphus jujuba and Paulownia coreana Using PCR-RELP

  • Han, Mu-Seok;Noh, Eun-Woon;Yun, Jeong-Koo
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.189-193
    • /
    • 2001
  • The relationships between the phytoplasmas infecting Zizyphus jujuba and Paulownia coreana were investigated by PCR-RELP. The 16S rRNA genes of the phytoplasmas were analyzed and compared with each other after PCR amplification. The amplified bands 1.4 kb in size were analyzed by both restriction digestion and sequencing after cloning into a plasmid vector. In some cases, two different kinds of inserts were observed in the isolates that originated from a single plant. However, many of them appeared to be the amplification products of chloroplastic 16S rRNA gene of host plants. The phytoplasma gene could be differentiated from the chloroplastic gene by restriction digestion of the plasmids carrying the amplification products. Only the recombinant plasmids carrying phytoplasma 16S rRNA gene produced a 1.4 kb band when digested with the enzyme BanII. Of the 52 recombinant plasmids analyzed, 42 appeared to contain inserts that originated from the chloroplastic 16S rRNA gene of the host plants. No variation was detected among 16S rRNA gene of nine phytoplasma isolates infecting Z. jujuba. However, the phytoplasmas infecting Z. jujuba were different from that infecting P. coreana.

  • PDF

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Draft genome sequence of Pelagicola sp. DSW4-44 isolated from seawater (해수에서 분리된 Pelagicola sp. DSW4-44의 초안 유전체 서열분석)

  • Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.283-285
    • /
    • 2019
  • The draft genome sequencing for Pelagicola sp. DSW4-44 (= KCTC 62762 = KCCM 43261), isolated from deep seawater of East Sea in Korea, was performed using Illumina HiSeq platform. As a result, the draft genome was comprised of a total length of approximately 4.85 Mbp with G + C content of 54.3%, and included a total of 4,566 protein-coding genes, 3 rRNA genes, 48 tRNA genes, 3 non-coding RNA genes, and 67 pseudo genes. In the draft genome, the strain DSW4-44 contained genes involved in the nitrogen metabolism of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, which were not found other strains in the genus Pelagicola.

Draft genome sequence of Zhongshania marina DSW25-10T isolated from seawater (해수에서 분리된 Zhongshania marina DSW25-10T 의 유전체 서열분석)

  • Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.480-482
    • /
    • 2018
  • The draft genome sequencing for Zhongshania marina $DSW25-10^T$, isolated from deep seawater of East Sea in Korea, was performed using Illumina HiSeq platform. As a result, the draft genome was comprised of a total length of approximately 4.08 Mbp with G + C content of 49.0%, and included a total of 3,702 protein-coding genes, 3 rRNA genes, 39 tRNA genes, 4 non-coding RNA genes, and 36 pseudogenes. In addition, the metabolic pathways of aliphatic and aromatic compounds were identified. In light of these metabolic pathways, Zhongshania marina $DSW25-10^T$ is expected to be a useful bioremediation resource.

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang;Thi Hao Vu;Jubi Heo;Chaeeun Kim;Hyun S. Lillehoj;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.73.1-73.16
    • /
    • 2023
  • Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.