• Title/Summary/Keyword: RNA quality control

Search Result 104, Processing Time 0.025 seconds

The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans

  • Hyunwoo C. Kwon;Yunkyu Bae;Seung-Jae V. Lee
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.664-671
    • /
    • 2023
  • The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.

Longevity regulation by NMD-mediated mRNA quality control

  • Son, Heehwa G.;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.160-161
    • /
    • 2017
  • Proper maintenance of biological components is crucial for longevity and healthy aging. Although the role of homeostatic maintenance systems for DNA and protein in longevity is established, it remains largely unknown for RNA. In our recent work, we show that nonsense-mediated mRNA decay (NMD) promotes longevity in the roundworm C. elegans by enhancing RNA quality control. We find that the activity of NMD decreases during aging, raising the possibility that RNA quality declines in old animals. We then show that key components of NMD complex are required for prolonged lifespan in C. elegans. In addition, animals with reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS), a representative longevity model, display increased NMD activity. Thus, up-regulation of NMD appears to play crucial roles in longevity conferred by reduced IIS via enhancing mRNA quality control. As both IIS and NMD pathways are evolutionarily conserved, mammals including humans may be equipped with similar RNA quality control systems to achieve longevity.

Crosstalk between RNA silencing and RNA quality control in plants

  • Yun Ju Kim
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.321-325
    • /
    • 2023
  • RNAs are pivotal molecules acting as messengers of genetic information and regulatory molecules for cellular development and survival. From birth to death, RNAs face constant cellular decision for the precise control of cellular function and activity. Most eukaryotic cells employ conserved machineries for RNA decay including RNA silencing and RNA quality control (RQC). In plants, RQC monitors endogenous RNAs and degrades aberrant and dysfunctional species, whereas RNA silencing promotes RNA degradation to repress the expression of selected endogenous RNAs or exogenous RNA derived from transgenes and virus. Interestingly, emerging evidences have indicated that RQC and RNA silencing interact with each by sharing target RNAs and regulatory components. Such interaction should be tightly organized for proper cellular survival. However, it is still elusive that how each machinery specifically recognizes target RNAs. In this review, we summarize recent advances on RNA silencing and RQC pathway and discuss potential mechanisms underlying the interaction between the two machineries.

The Dharma of Nonsense-Mediated mRNA Decay in Mammalian Cells

  • Popp, Maximilian Wei-Lin;Maquat, Lynne E.
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Mammalian-cell messenger RNAs (mRNAs) are generated in the nucleus from precursor RNAs (pre-mRNAs, which often contain one or more introns) that are complexed with an array of incompletely inventoried proteins. During their biogenesis, pre-mRNAs and their derivative mRNAs are subject to extensive cis-modifications. These modifications promote the binding of distinct polypeptides that mediate a diverse array of functions needed for mRNA metabolism, including nuclear export, inspection by the nonsense-mediated mRNA decay (NMD) quality-control machinery, and synthesis of the encoded protein product. Ribonucleoprotein complex (RNP) remodeling through the loss and gain of protein constituents before and after pre-mRNA splicing, during mRNA export, and within the cytoplasm facilitates NMD, ensuring integrity of the transcriptome. Here we review the mRNP rearrangements that culminate in detection and elimination of faulty transcripts by mammalian-cell NMD.

Association of the miRNA146a rs2910164 C>G Polymorphism with Head and Neck Cancer Risk: A Meta-analysis

  • Chen, Xiang-Jun;Zhou, Tao-You;Chen, Min;Li, Nian;Liu, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3871-3874
    • /
    • 2015
  • Objective: To investigate any association of the miRNA146a rs2910164 C>G polymorphism with head and neck cancer risk. Materials and Methods: The Medline, PubMed, PUBMED, EMBASE, Web of Science, WanFang and CNKI databases were searched and a meta-analysis was conducted using RevMan 5.2 software. Results: After searching and evaluating the literature, a total seven papers involving 2,766 patients with head and neck cancer and 6,603 healthy controls were included into this meta analysis. The results showed that there were no significant differences between patients and healthy controls overall for the miRNA rs2910164 C>G gene polymorphism (dominant model:OR=0.78, 95%CI:0.58-1.04, P=0.09; recessive model:OR=0.86, 95%CI:0.67-1.12, P=0.27;GG:CC:OR=0.75, 95%CI:0.52-1.08, P=0.12;GC:CC:OR=0.79, 95%CI:0.60-1.04, P=0.10). However, a significant association of miRNA rs2910164 C>G gene polymorphism with Chinese head and neck cancer risk was noted, limited to the dominant model (OR=0.68, 95%CI:0.50-0.95, P=0.02;GG:CC:OR=0.62, 95%CI:0.42-0.92, P=0.02;GC:CC:OR=0.72, 95%CI:0.520.99, P=0.04). Conclusions: miRNA146a rs2910164 C>G polymorphism is not associated with head and neck cancer risk in general, but tehre may be link in Chinese.

Protein and RNA Quality Control by Autophagy in Plant Cells

  • Yoon, Seok Ho;Chung, Taijoon
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.

Nonsense-mediated mRNA decay at the crossroads of many cellular pathways

  • Lejeune, Fabrice
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.175-185
    • /
    • 2017
  • Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.

RNA-seq Analysis Pipeline for Differential Gene Expression (유전자 발현량 비교를 위한 RNA-seq 분석 파이프라인 설계)

  • Jung, Minah;Kim, Dae-soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.319-320
    • /
    • 2018
  • 여러 단계를 걸쳐 이루어지는 RNA-seq 분석 과정을 한 번에 처리할 수 있는 shell script 파이프라인을 구축하였다. 연구자들로 하여금 trimming, quality control, mapping, assembly, quantification 등 개별 과정을 거치지 않고, 한 줄의 커맨드 라인(command line) 만으로 유전자 발현량과 상대적 발현량 차이를 확인할 수 있는 fold change(FC) 값까지 얻을 수 있도록 하였다.

  • PDF

Mammary Gland Indices at the End of Lactation in the Superovulated Javanese Thin-Tail Ewes

  • Manalu, W.;Sumaryadi, M.Y.;Sudjatmogo, Sudjatmogo;Satyaningtijas, A.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.440-445
    • /
    • 2000
  • Thirty lactating Javanese thin-tail ewes (12 ewes had been injected, prior to mating, with 700 IU pregnant mare serum gonadotropin, and 18 ewes with saline as a control) were used to evaluate the effect of superovulation on milk production during lactation and mammary chemical indices at the end of lactation. Thirteen ewes (9 control and 4 superovulated ewes) were fed at low and the other 17 ewes (9 control and 8 superovulated ewes) were fed at high quality ration. Superovulated ewes, either fed at low or high quality ration, had dramatically higher milk yields (57%). At the end of lactation, superovulated ewes had higher mammary dry fat-free tissue, mammary DNA concentration, total mammary DNA and RNA contents than nonsuperovulated ewes. Superovulation did not affect mammary RNA and collagen concentrations, and total collagen content. Ration quality did not significantly increase milk production during lactation and mammary chemical indices at the end of lactation. The observed increase in milk production in the superovulated ewes was probably due to the increased mammary secretory cell number and their synthetic activities during lactation as a result of the increased endogenous hormonal stimulation of mammary growth and development during pregnancy.

Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets

  • Xing, Shen;Zhang, Bolin;Lin, Meng;Zhou, Ping;Li, Jiaolong;Zhang, Lin;Gao, Feng;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.236-245
    • /
    • 2017
  • Objective: The study was to investigate the effects of alanyl-glutamine (Ala-Gln) and glutamine (Gln) supplementation on the intestinal mucosa barrier in piglets. Methods: A total of 180 barrows with initial weight $10.01{\pm}0.03kg$ were randomly allocated to three treatments, and each treatment consisted of three pens and twenty pigs per pen. The piglets of three groups were fed with control diet [0.62% alanine (Ala)], Ala-Gln diet (0.5% Ala-Gln), Gln diet (0.34% Gln and 0.21% Ala), respectively. Results: The results showed that in comparison with control diet, dietary Ala-Gln supplementation increased the height of villi in duodenum and jejunum (p<0.05), Gln supplementation increased the villi height of jejunum (p<0.05), Ala-Gln supplementation up-regulated the mRNA expressions of epidermal growth factor receptor and insulin-like growth factor 1 receptor in jejunal mucosa (p<0.05), raised the mRNA expressions of Claudin-1, Occludin, zonula occludens protein-1 (ZO-1) and the protein levels of Occludin, ZO-1 in jejunal mucosa (p<0.05), Ala-Gln supplementation enlarged the number of goblet cells in duodenal and ileal epithelium (p<0.05), Gln increased the number of goblet cells in duodenal epithelium (p<0.05) and Ala-Gln supplementation improved the concentrations of secretory immunoglobulin A and immunoglobulin G in the jejunal mucosa (p<0.05). Conclusion: These results demonstrated that dietary Ala-Gln supplementation could maintain the integrity of small intestine and promote the functions of intestinal mucosa barriers in piglets.