• Title/Summary/Keyword: RNA metabolism

Search Result 615, Processing Time 0.033 seconds

Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains

  • Maher-Laporte, Marjolaine;DesGroseillers, Luc
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.344-348
    • /
    • 2010
  • Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

Diversity of Leuconostocs on Garlic Surface, an Extreme Environment

  • KIM, MYUNG HEE;SUN TAEK SHIM;YOUN SOON KIM;KYU HANG KYUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.497-502
    • /
    • 2002
  • Thirty-nine strains of Leuconostocs found to be tolerant to $10\%$ or more garlic were selected for further identification, by comparing their whole-cell protein pattern, 16S rRNA gene (first 530 bases) sequence, cellular fatty acid composition, and carbon source metabolism. Two isolates were Identified as Leuconostoc mesenteroides and 32 others as Leuconostoc citreum. Five other strains belonging to a cluster could not be allocated to the existing species. 16S rRNA gene sequence and cellular fatty acid composition of the unidentified bacteria exhibited close similarity with Leuconostoc argentinum. The unidentified isolates were not allocated to L. argentinum, because they formed polysaccharide from sucrose, while L. argentinum strains do not. Leuconostocs tolerant to high concentration of garlic were found predominantly on garlic surface, an extreme environment which is unfit for most of other microorganisms.

Modulation of Pituitary Somatostatin Receptor Subtype (sst1-5) mRNA Levels by Growth Hormone (GH)-Releasing Hormone in Purified Somatotropes

  • Park, Seung-Joon;Park, Hee-Soon;Lee, Mi-Na;Sohn, Sook-Jin;Kim, Eun-Hee;Jung, Jee-Chang;Frohman, Lawrence A.;Kineman, Rhonda D.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • We have previously reported that expression of the somatostatin receptor subtypes, sst1-5, is differentially regulated by growth hormone (GH)-releasing hormone (GHRH) and forskolin (FSK), in vitro. GHRH binds to membrane receptors selectively located on pituitary somatotropes, activates adenylyl cyclase (AC) and increases sst1 and sst2 and decreases sst5 mRNA levels, without significantly altering the expression of sst3 and sst4. In contrast FSK directly activates AC in all pituitary cell types and increases sst1 and sst2 mRNA levels and decreases sst3, sst4 and sst5 expression. Two explanations could account for these differential effects: 1) GHRH inhibits sst3 and sst4 expression in somatotropes, but this inhibitory effect is masked by expression of these receptors in unresponsive pituitary cell types, and 2) FSK inhibits sst3 and sst4 expression levels in pituitary cell types other than somatotropes. To differentiate between these two possibilities, somatotropes were sequentially labeled with monkey anti-rat GH antiserum, biotinylated goat anti-human IgG, and streptavidin-PE and subsequently purified by fluorescent-activated cell sorting (FACS). The resultant cell population consisted of 95% somatotropes, as determined by GH immunohistochemistry using a primary GH antiserum different from that used for FACS sorting. Purified somatotropes were cultured for 3 days and treated for 4 h with vehicle, GHRH (10 nM) or FSK ($10{\mu}M$). Total RNA was isolated by column extraction and specific receptor mRNA levels were determined by semi-quantitative multiplex RT-PCR. Under basal conditions, the relative expression levels of the various somatostatin receptor subtypes were sst2>sst5>sst3=sst1> sst4. GHRH treatment increased sst1 and sst2 mRNA levels and decreased sst3, sst4 and sst5 mRNA levels in purified somatotropes, comparable to the effects of FSK on purified somatotropes and mixed pituitary cell cultures. Taken together, these results demonstrate that GHRH acutely modulates the expression of all somatostatin receptor subtypes within GH-producing cells and its actions are likely mediated by activation of AC.

Sexual Maturation May Affect the Levels of n-6 PUFA in Muscle Tissues of Male Mice

  • Park, Chang Seok;Choi, Inho;Park, Young Sik
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.147-153
    • /
    • 2013
  • Lipid metabolism in mature male mice may be different from immature male mice, but the relationship of lipid metabolism, especially n-6 fatty acid metabolism, and sexual maturation is not clearly established. This study was carried out to elucidate whether sexual maturation may affect the metabolism of functional n-6 fatty acids of lipid components by investigating the composition of fatty acids in the longissimus muscle tissues of mature and immature male mice with GC and analyzing the expression of genes and proteins for synthesis of n-6 fatty acids with real-time PCR and western blotting, respectively. Mature male mice showed significantly higher testosterone level in the sera. Similarly, n-6 fatty acids, levels of linoleic acid (LA 18:2n-6) and total n-6 PUFA (Polyunsaturated fatty acids) were increased, but the levels of ${\gamma}$-linolenic acid (GLA; 18:3n-6), dihomo-${\gamma}$-linolenic acid (DGLA; 20:3n-6) and arachidonic acid (AA; 20:4 n-6) were decreased in the mature male mice. mRNA levels of ${\Delta}5$-desaturase (FASD1) and elongase (ELOVL5) genes related to n-6 fatty acid metabolism increased. However, the level of FADS1 protein only increased in mature male mice. In conclusion, this study suggested that sexual maturation of male mice affected n-6 fatty acid metabolism by stimulating the expression of enzyme FADS1 of n-6 PUFA metabolism.

Effects of Dietary Protein Levels on Organ Growth and Protein Metabolism in Early and Normally Weaned Rats (단백질 섭취수준이 조기 이유 및 정상이유 흰쥐의 기관성장과 단백질 대사에 미치는 영향)

  • 박미나
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.5-12
    • /
    • 1998
  • This study was designed to examine how dietary protein levels affect organ growth and protein metabolism in early and normally weaned rats. Early and normally weaned rats separated fro the dam on the 15th and 121st day postpartum, respectively. were fed diets containing three levels of protein : low(10%) , normal (20%),and high(40%) . On the 35th day, the weight and DNA, RNA and protein contents in brain , liver, and kidney were determined to ascertain organ and cellular growth. Furthermore, serum total protein , albumin , $\alpha$-amino N and creatine and urinary urea N, and creatinine were determined in order to ascertain protein metabolism and renal functions. Dietary protein levels were not observed to significantly affect total DNA content, which may represent an index of cell number in the liver, brain and kidney. Fresh weight and protein/DNA ratio, which may represent indices of cell size, significantly increased in proportion to dietary protein in the kidney. As for the early weaned rats , the liver cell size significantly decreased. Dietary protein levels and weaning periods did not affect serum total protein and albumin . However, serum urea-N significantly increased in proportion to dietary protein levels whereas serum $\alpha$-amino N was decreased by early weaning . Nitrogen retention was lower in early weaned rats fed low or high levels of protein than in normally weaned rats. The results demonstrate that low or high levels of dietary protein have less desirable effects on protein metabolism in prematurely weaned rats.

  • PDF

Simultaneous Determination of α-Amanitin and β-Amanitin in Mouse Plasma Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Bang, Young Yoon;Lee, Min Seo;Lim, Chang Ho;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.112-117
    • /
    • 2021
  • α-Amanitin and β-amanitin are highly toxic bicyclic octapeptides responsible for the poisoning of poisonous mushrooms such as Amanita, Galerina, and Lepiota by inhibiting RNA polymerase II, DNA transcription, and protein synthesis. A sensitive, simple, and selective liquid chromatography-high resolution mass spectrometric method using parallel reaction monitoring mode was developed and validated for the simultaneous determination of α- and β-amanitin in mouse plasma to evaluate the toxicokinetics of α- and β-amanitin in mice. Protein precipitation of 5 μL mouse plasma sample with methanol as sample clean-up procedure and use of negative electrospray ionization resulted in better sensitivity and less matrix effect. The calibration curves for α- and β-amanitin in mouse plasma were linear over the range of 0.5-500 ng/mL. The intra- and inter-day coefficient of variations and accuracies for α- and β-amanitin at four quality control concentrations were 3.1-14.6% and 92.5-115.0%, respectively. The present method was successfully applied to the toxicokinetic study of α- and β-amanitin after an oral administration of α- and β-amanitin at 1.5 mg/kg dose to male ICR mice.

Lipogenesis Gene Expression Profiling in Longissimus dorsi on the Early and Late Fattening stage of Hanwoo (한우 비육 전·후기의 등심조직에 있어서 지방합성 유전자 발현)

  • 이승환;박응우;조용민;김경훈;오영균;이지혜;이창수;오성종;윤두학
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.345-352
    • /
    • 2006
  • Korean native cattle (Hanwoo) have a good capacity to produce heavily marbled meat of high value. The intramuscular fat in Hanwoo is known to be deposit from 12 months of age by degree of slightly visible and significantly developed in 28 months of age. Lipogenesis gene expression profiling in longissimus dorsi at early and late fattening stage will be helpful to understand the mechanism of intramuscular fat deposition in skeletal muscle. Therefore, we analysed the gene expression patterns of six genes related lipid metabolism (FABP4, GLUT4, LPL, ACC, ACL and SCD) between early and late fattening stage. The mRNA expression of FABP4 at late fattening stage (27 months old) was higher about 3.0 fold than at early fattening stage (12 months old) in each three individuals of Hanwoo. However, GLUT4 mRNA expression was not different at late fattening stage compared with at early fattening stage. On the other hand, The expression patterns of LPL, ACC, ACL and SCD genes related lipid metabolism were significantly over-expressed about 3.5 fold, 2.7 fold, 3.7 fold and 7.5 fold at late fattening stage, respectively. Thus, these results suggested that lipogenesis in skeletal muscle at late fattening stage is due to increasing uptake of fatty acid by FABP4 and lipogenesis gene expression such as LPL, ACC, ACL and SCD.

RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a

  • Habib, Khadija;Bishayee, Kausik;Kang, Jieun;Sadra, Ali;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.588-602
    • /
    • 2022
  • Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelopmental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.

The Effect of Ethanol Extracts from Fish Flour on the Nucleic Acid Metabolism in Rats (소어분(小魚粉)의 주정추출성분(酒精抽出成分)이 백서(白鼠)의 핵산대사(核酸代謝)에 미치는 영향)

  • Oh, Seoung-Ho;Koh, Jin-Bog;Choi, Jeun-Duo;Lee, Myoung-Hoon
    • Journal of Nutrition and Health
    • /
    • v.5 no.3
    • /
    • pp.127-133
    • /
    • 1972
  • This study was designed to observe the effect of ethanol extracts from fish flour on the nucleic acid metabolism in rats. Young rats, weighing 75-85g were used as the experimental animals and diet used were 8 kinds; diet supplemented with 10% fish flour, diets which were supplemented with the extracts and or remainders of fish flour after extracting by either 76% or 96% ethanol to the rice diet, respectively, and diet supplemented with 6% casein. After feeding corresponding diet for 40 days, RNA and DNA contents, and DNase activities in the liver, kidney and braid were determined. The results obtaioed from this study are summarized as follows: 1. The RNA contents of the ethanol-treatment groups are, in the liver and kidney, similar to, and in the brain, generally higher than, that of the control group. 2. The DNA contents of each organ show no difference between ethanol-treatment groups and control group, but in the liver, of ethanol extrat groups are lower than casein group. 3. the DNase activity of each organ in the ethanol-treatmeut groups, is generally lower than the control group. The above results indicate that ethanol extracts from fish flour have influence on the nucleic acid metabolism.

  • PDF

Influence of Dietary Conjugated Linoleic Acid on Growth Performance and Body Fat Metabolism in Broiler Chickens (사료내 Conjugated Linoleic Acid 첨가가 육계의 성장 및 체지방 대사에 미치는 영향)

  • Ko, Y.H.;Yang, H.Y.;Kang, S.Y.;Jang, In-Surk
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.195-204
    • /
    • 2005
  • The current study was conducted to investigate the effects of dietary conjugated linoleic acid(CLA) on growth performance and body fat metabolism in broiler chickens. A total of 48 male birds aged 3 days were randomly allotted into three dietary groups; CORN(com oil 1.5%), CLA I (com oil 0.75 %+ CLA 0.75 %) and CLA II(CLA 1.5%) groups. After feeding commercial diet ad libitum for 3 weeks, eight selected birds on the basis of body weight were housed, two birds in a cage, and continuously given ad libitum corresponding experimental diet for another 2 weeks. As a result, dietary addition of CLA did not influence on body weight, gain and feed conversion rote. The relative weights of the liver and deposited fats(abdominal and thigh fat' pads) were not also affected by the dietary treatments. Serum glucose, triglyceride and cholesterol levels markedly( P < 0.05) decreased in CLA II compared with those in CORN group. However, serum nonesterified fatty acid(NEFA) was not altered by dietary CLA. Serum leptin level was tended to be decreased by dietary CLA without statistical difference. The diet supplemented with CLA caused a significant(P< 0.05) decrease in hepatic total lipid and NEFA without changing triglyceride level. Also, feeding dietary CLA at the level of 1.5% reduced leptin mRNA expression in the liver and abdominal fats compared with feeding com oil, In conclusion, our results suggest that dietary 1.5% CLA may affect, at least in part, lipid metabolism in the liver of broiler chickens.