• Title/Summary/Keyword: RNA degradation

Search Result 423, Processing Time 0.023 seconds

EFFECTS OF SUBSTANCE P ON COLLAGEN PRODUCTION IN HUMAN PERIODONTAL LIGAMENT CELLS (치주인대 세포의 교원질 생성에 대한 Substance P의 효과)

  • CHUN, Jun-Yeung;Choi, Je-Yong;Kyung, Hee-Moon;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.83-94
    • /
    • 1996
  • Substance P is one of the neuropeptide which presents highly in tension site of periodontal ligament during the orthodontic tooth movement. It has bnn also hon as one of the neuropeptides which cause neurogenic inflammation in various tissues and organs. However, there is no report about the effect of substance P on major extracellular matrix protein, collagen production. The purpose of this study was to evaluate the collagen production by substance P in human periodontal ligament cell. The collagenase-digestion method was used to evaluate collagen production and also used Northern blot hybridization for the evaluation of collagen mRNA level. This study also Included in terms of prostanglandins and gelatinase production with respect to collagen production. For the collagen degradation, zymography was used to estimate denatured collagen degradation. Dose-dependent effect of substance P on noncollagen protein, collagen, and percent collagen was that substance P increased noncollagen protein synthesis, but decreased collagen sytnsis. So the percent collagen, which determined by relative collagen production against total protein production, w3s decreased from $7\%\;to\;3.6\%$. This inhibitory effect of substance P on collagen production was disappeared when cells were treated concomitantly with indomethacin. It means that substance P-induced inhibitory effect on collagen production was due at least in part to the production of prostaglandins. To evaluate whether substance P-induced inhibitory effect on collagen production is correspond to the steady-state levels of procollagen mRNA, Northern blot hybridization was performed and it showed that substance P has no effect on the steady-slate level of ${\alpha}1(I)$ procollagen mRNA. It means that the inhibitory effect of substance P on collagen production was due to the change of a certain mechanism after posttranscription. In this context, gelatinase production by substance P in periodontal ligament cells was evaluated by zymography. Zymogram showed that substance P has no effect on gelatinase production in periodontal ligament cells. To explore wheter substance P-induced inhibitory effect on collagen production is selevtive in periodontal ligament cells or not, MC3T3-E1 cells which originated from mouse calvaria was used. It showed that substance P has no effect on collagen production in MC3T3-E1 cells. Taken together, substance P inhibits collagen production in human periodontal ligament cells. This effect was not due to the change of the steady-state level of procollagen mRNA and gelatinase production, but due at least in part to the change of prostaglandins production.

  • PDF

Analysis of the Gene Expression by Laser Captured Microdissection (I): Minimum Conditions Required for the RNA Extraction from Oocytes and Amplification for RT-PCR (Laser Captured Microdissection을 이용한 유전자 발현에 대한 연구 (I): RT-PCR을 위한 난자의 RNA 추출 및 증폭을 위한 최소한도의 확립)

  • Park, Chang-Eun;Ko, Jung-Jae;Cha, Kwang-Yul;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.3
    • /
    • pp.183-190
    • /
    • 2001
  • Objective: Recently, microdissection of tissue sections has been used increasingly for the isolation of morphologically identified homogeneous cell populations, thus overcoming the obstacle of tissue complexity for the analysis cell-specific expression of macromolecules. The aim of the present study was to establish the minimal conditions required for the RNA extraction and amplification from the cells captured by the laser captured microdissection. Methods : Mouse ovaries were fixed and cut into serial sections (7 im thickness). Oocytes were captured by laser captured microdissection (LCM) method by using PixCell $II^{TM}$ system. The frozen sections were fixed in 70% ethanol and stained with hematoxylin and eosin, while the paraffin sections were stained with Multiple stain. Sections were dehydrated in graded alcohols followed by xylene and air-dried for 20 min prior to LCM. All reactions were performed in ribonuclease free solutions to prevent RNA degradation. After LCM, total RNA extraction from the captured oocytes was performed using the guanidinium isothiocyanate (GITC) solution, and subsequently evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR) for glyceraldehyde-3-phosphate-dehydrogenase (GAPDH). Results: With the frozen sections, detection of the GAPDH mRNA expression in the number of captured 25 oocytes were not repeatable, but the expression was always detectable from 50 oocytes. With 25 oocytes, at least 27 PCR cycles were required, whereas with 50 oocytes, 21 cycles were enough to detect GA PDH expression. Amount of the primary cDNA required for RT-PCR was reduced down to at least 0.25 $\grave{i}$ l with 50 oocytes, thus the resting 19.75 il cDNA can be used for the testing other interested gene expression. Tissue-to-slide, tissue-to-tissue forces were very high in the paraffin sections, thus the greater number of cell procurement was required than the frozen sections. Conclusion: We have described a method for analyzing gene expression at the RNA level with the homogeneously microdissected cells from the small amount of tissues with complexity. We found that LCM coupled with RT-PCR could detect housekeeping gene expression in 50 oocytes captured. This technique can be easily applied for the study of gene expression with the small amount of tissues.

  • PDF

In situ isolation and characterization of the biosurfactants of B. Subtilis

  • Akthar, Wasim S.;Aadham, Mohamed Sheik;Nisha, Arif S.
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • Crude oils are essential source of energy. It is majorly found in geographical locations beneath the earth's surface and crude oil is the main factor for the economic developments in the world. Natural crude oil contains unrefined petroleum composed of hydrocarbons of various molecular weights and it contains other organic materials like aromatic compounds, sulphur compounds, and many other organic compounds. These hydrocarbons are rapidly getting degraded by biosurfactant producing microorganisms. The present study deals with the isolation, purification, and characterization of biosurfactant producing microorganism from oil-contaminated soil. The ability of the microorganism producing biosurfactant was investigated by well diffusion method, drop collapse test, emulsification test, oil displacement activity, and blue agar plate method. The isolate obtained from the oil contaminated soil was identified as Bacillus subtilis. The identification was done by microscopic examinations and further characterization was done by Biochemical tests and 16SrRNA gene sequencing. Purification of the biosurfactant was performed by simple liquid-liquid extraction, and characterization of extracted biosurfactants was done using Fourier transform infrared spectroscopy (FTIR). The degradation of crude oil upon treatment with the partially purified biosurfactant was analyzed by FTIR spectroscopy and Gas-chromatography mass spectroscopy (GC-MS).

Inhibition of the NEDD8 Conjugation Pathway by shRNA to UBA3, the Subunit of the NEDD8-Activating Enzyme, Suppresses the Growth of Melanoma Cells

  • Cheng, Fang;Chen, Hao;Zhang, Lei;Ruo-Hong, Li;Liu, Yi;Sun, Jian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), a ubiquitin-like protein, mainly functions through covalent ligation to cullin proteins. Conjugation of NEDD8 with cullins can promote ubiquitination, which plays a critical role in the degradation of many proteins. UBA3 is the subunit of NEDD8-activating enzyme which is one of the keys for NEDD8 linkage to cullin proteins. Previous research showed NEDD8 conjugation to be up-regulated in highly proliferative cell lines. In the present study, up-regulated NEDD8 conjugation was observed in melanoma cell lines by Western blot analysis. After down-regulation with a RNAi to UBA3, proliferation of M14 was suppressed in vitro and in vivo. In conclusion, up-regulated NEDD8 conjugation may be involved in the development of melanoma. Interference in this pathway might offera promising method for melanoma therapy.

Inhibition of Wnt Signaling by Silymarin in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Park, Gwang Hun;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.380-386
    • /
    • 2016
  • Silymarin from milk thistle (Silybum marianum) has been reported to show an anti-cancer activity. In previous study, we reported that silymarin induces cyclin D1 proteasomal degradation through NF-${\kappa}B$-mediated threonine-286 phosphorylation. However, mechanism for the inhibition of Wnt signaling by silymarin still remains unanswered. Thus, we investigated whether silymarin affects Wnt signaling in human colorectal cancer cells to elucidate the additional anti-cancer mechanism of silymarin. Transient transfection with a TOP and FOP FLASH luciferase construct indicated that silymarin suppressed the transcriptional activity of ${\beta}$-catenin/TCF. Silymarin treatment resulted in a decrease of intracellular ${\beta}$-catenin protein but not mRNA. The inhibition of proteasome by MG132 and $GSK3{\beta}$ inhibition by SB216763 blocked silymarin-mediated downregulation of ${\beta}$-catenin. In addition, silymarin increased phosphorylation of ${\beta}$-catenin and a point mutation of S33Y attenuated silymarin-mediated ${\beta}$-catenin downregulation. In addition, silymarin decreased TCF4 and increased Axin expression in both protein and mRNA level. From these results, we suggest that silymarin-mediated downregulation of ${\beta}$-catenin and TCF4 may result in the inhibition of Wnt signaling in human colorectal cancer cells.

miR-186 Regulates Glycolysis through Glut1 During the Formation of Cancer-associated Fibroblasts

  • Sun, Pan;Hu, Jun-Wei;Xiong, Wu-Jun;Mi, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4245-4250
    • /
    • 2014
  • Emerging evidence has suggested that glycolysis is enhanced in cancer-associated fibroblasts (CAF), and miR-186 is downregulated during the CAF formation. However, it is not clear whether miR-186 is involved in the regulation of glycolysis and what the role of miR-186 plays during the CAF formation. In this study, quantitative PCR analysises show miR-186 is downregulated during the CAF formation. Moreover, miR-186 targets the 3' UTR of Glut1, and its overexpression results in the degradation of Glut1 mRNA, which eventually reduces the level of Glut1 protein. On the other hand, knockdown of miR-186 increased the expression of Glut1. Both time course and dose response experiments also demonstrated that the protein and mRNA levels of Glut1 increase during CAF formation, according to Western blot and quantitative PCR analyses, respectively. Most importantly, besides the regulation on cell cycle progression, miR-186 regulates glucose uptake and lactate production which is mediated by Glut1. These observations suggest that miR-186 plays important roles in glycolysis regulation as well as cell cycle checkpoint activation.

Ablation of Arg-tRNA-protein transferases results in defective neural tube development

  • Kim, Eunkyoung;Kim, Seonmu;Lee, Jung Hoon;Kwon, Yong Tae;Lee, Min Jae
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.443-448
    • /
    • 2016
  • The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1−/− mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1−/− brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1−/− neuroepithelium and a significantly higher nitric oxide concentration in the ATE1−/− brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells.

In vitro Angiogenic Activity of Aloe vera Gel on Calf Pulmonary Artery Endothelial (CPAE) Cells

  • Lee, Myoung-Jin;Lee, Ok-Hee;Yoon, Soo-Hong;Lee, Seung-Ki;Chung, Myung-Hee;Park, Young-In;Sung, Chung-Ki;Choi, Jae-Sue;Kim, Kyu-Won
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.260-265
    • /
    • 1998
  • Angiogenic activity of Aloe vera gel was investigated by in vitro assay. We obtained the most active fraction from dichloromethane extract of Aloe vera gel by partitioning between hexane and 90% aqueous methanol. The most active fraction (F3) increased the proliferation of calf pulmonary artery endothelial (CPAE) cells. In addition, F3 fraction induced CPAE cells to invade type I collagen gel and form capillary-like tube through in vitro angiogenesis assay, and increased the invasion of CPAE cells into matrigel through in vitro invasion assay. Furthermore, the effect on the MRNA expression of proteolytic enzymes which are key participants in the regulation of extracellular matrix degradation was investigated by northern blot analysis. F3 fraction enhanced mRNA expression of urokinase-type plasminogen activator (u-PA), matrix metalloproteinase-2 (MMP-2), and membrane-type MMP (MT-MMP) in CPAE cells whereas the expression of plasminogen activator inhibitory (PAl-1) mRNA was not changed.

  • PDF

Effect of the Selaginella tamariscina Extract on Antioxidation and Inhibition of Matrix Metalloproteinase-1 in Human Skin Fibroblasts (권백 추출물의 인간 피부 섬유아세포에서의 항산화와 Matrix Metalloproteinase-1 발현저해효과)

  • 심관섭;김진화;박성민;이범천;윤여표;표형배
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.165-170
    • /
    • 2004
  • The production of matrix metalloproteinases (MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix (ECM) by these enzymes is known as one of the main reasons of photoaging. In this paper, to investigate the relationship between aging and Selaginella tamariscina extract (STE), we investigated the effects of antioxidant and expression of UVA-induced MMP-1 in human dermal fibroblasts. STE was found to show scavenging activities of radicals and reactive oxygen species (ROS) with the $IC_{50}$/ values of 65.1 $\mu\textrm{g}$/$m\ell$ against 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical and 40.9 $\mu\textrm{g}$/$m\ell$ against superoxide radicals in the xanthine/xanthine oxidase system, respectively. UVA induced MMP expression was reduced 75.5% by treatment with STE, and MMP-1 mRNA expression was reduced in a dose-dependent manner. Therefore STE was able to significantly inhibition of MMP expression in protein and mRNA level. All these results suggested that STE may act as an anti-aging agent by antioxidation and reducing UVA-induced MMP-1 production.

Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats

  • Ji, Zhibin;Wang, Guizhi;Zhang, Chunlan;Xie, Zhijing;Liu, Zhaohua;Wang, Jianmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.309-315
    • /
    • 2013
  • MicroRNAs are a class of endogenous small RNAs that play important roles in post-transcriptional gene regulation by directing degradation of mRNAs or facilitating repression of target gene translation. In this study, three small RNA cDNA libraries from the mammary gland tissues of Laoshan dairy goats (Capra hircus) were constructed and sequenced, individually. Through Solexa high-throughput sequencing and bioinformatics analysis, we obtained 50 presumptive novel miRNAs candidates, and 55,448 putative target genes were predicted. GO annotations and KEGG pathway analyses showed the majority of target genes were involved in various biological processes and metabolic pathways. Our results discovered more information about the regulation network between miRNAs and mRNAs and paved a foundation for the molecular genetics of mammary gland development in goats.