• Title/Summary/Keyword: RNA cleavage

Search Result 165, Processing Time 0.02 seconds

Catalytic Activity of DNA-Pt Complex

  • Matsuoka, Yuki;Kojima, Toshinori;Higuchi, Akon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.253-253
    • /
    • 2006
  • DNA has not been played the role as a biocatalyst in evolutionary history, although RNA and protein function as a biocatalyst. DNA double helix structure is believed to be impossible to form intricate active enzymatic sites. In addition, the chemical stability of DNA prevents the ability from self-modifying reactions. However, recent development of DNA engineering enables to create artificial enzymatic ability of DNA (deoxyribozyme) such as RNA cleavage and DNA modification. We investigated optimal conditions for enzymatic activity of DNA-Pt complex, and compared it with that of horse radish peroxidase. We report here that base sequence of DNA, pH and temperature affect the enzymatic activity of DNA-Pt complex.

  • PDF

Development of Genetic System for Isolation of SSU rRNA Mutants that Bypass SecM-Mediated Ribosome Stalling (SecM에서 유래한 접착펩타이드에 의한 라이보솜 정지를 우회하는 SSU rRNA 돌연변이체 발굴을 위한 유전학적 시스템 개발)

  • Ha, Hye-Jeong;Kim, Hong-Man;Yeom, Ji-Hyun;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.271-276
    • /
    • 2008
  • Ribosome stalling by nascent sticky peptide has been reported in several organisms across the kingdom. To test whether small subunit (SSU) rRNA is involved in this phenomenon, we developed a genetic system that utilized the specialized ribosome system to isolate SSU rRNA mutants that enable ribosomes to bypass the SecM-derived sticky peptide in protein synthesis. In this system, CAT-SecM mRNA, which encodes CAT protein containing the sticky peptide derived from SecM, is only translated by specialized ribosomes. These ribosomes were shown to transiently stall on CAT-SecM mRNA followed by the synthesis of the sticky peptide. Expression of specialized ribosomes resulted in the decreased steady-state level of CAT-SecM mRNA, which is consistent with a notion that ribosome stalling induces mRNA degradation. Isolation and characterization of SSU rRNA mutations using this genetic system that are sufficient to circumvent ribosome stalling induced by the SecM-derived sticky peptide will provide evidence of SSU rRNA function in mRNA cleavage.

siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris

  • Lan, Han-hong;Wang, Cui-mei;Chen, Shuang-shuang;Zheng, Jian-ying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.508-520
    • /
    • 2019
  • Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.

MicroRNA-497 Suppresses Proliferation and Induces Apoptosis in Prostate Cancer Cells

  • Wang, Li;Li, Bo;Li, Lei;Wang, Te
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3499-3502
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of endogenously expressed small, non-coding, single-stranded RNAs that negatively regulate gene expression, mainly by binding to 3'- untranslated regions (3'UTR) of their target messenger RNAs (mRNAs), which cause blocks of translation and/or mRNA cleavage. Recently, miRNAprofiling studies demonstrated the microRNA-497 (miR-497) level to be down-regulated in all prostate carcinomas compared with BPH samples. The purpose of this study was to investigate the potential role of miR-497 in human prostate cancer. Proliferation, cell cycle and apoptosis assays were conducted to explore the potential function of miR-497 in human prostate cancer cells. Results showed that miR-497 suppressed cellular growth and initiated G0/G1 phase arrest of LNCaP and PC-3 cells. We also observed that miR-497 increased the percentage of apoptotic cells by increasing caspase-3/7 activity. Taken together, our results demonstrated that miR-497 can inhibit growth and induce apoptosis by caspase-3 activation in prostate cancer cells, which suggest its use as a potential therapeutic target in the future.

Roles of Neutral Sphingomyelinase 1 on CD95-Mediated Apoptosis in Human Jurkat T Lymphocytes

  • Lee, Hyun-Min;Surh, Bo-Young;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.262-270
    • /
    • 2010
  • CD95 receptor is a member of tumor necrosis factor receptor family that mediates apoptosis in many cell types when bound by CD95 ligand or cross-linked by agonistic anti-CD95 antibodies. To determine the role of neutral sphingomyelinase (nSMase) on CD95-mediatd apoptosis, human Jurkat T lymphocytes were exposed to recombinant human CD95 ligand. Treatment with CD95 ligand induced cell death in a concentration and time-dependent manner. CD95-induced cell death was suppressed by inhibitors of SMase such as AY9944 or desipramine. Transfection with human nSMase1 siRNA plasmid into CD95 ligand-treated cells significantly prevented CD95-mediated cell death. CD95-mediated elevation of intracellular ceramide level detected by FACS analysis with anti-ceramide antibody was also decreased by nSMase1 siRNA. Knock-down of nSMase1 expression also blocked cytochrome c release into cytosol and caspase-3 cleavage in CD95-treated cells. Taken together, these results suggest that nSMase1 may play an important role in CD95-mediated apoptotic cell death in Jurkat T cells.

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon;Kim, Hyun Ju;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1919-1926
    • /
    • 2020
  • CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

Characteristics of the Parathion Degrading Pseudomonas rhodesiae H5. (파라치온 분해 세균 Pseudomonas rhodesiae H5의 특성)

  • 윤남경;박경량
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.582-588
    • /
    • 2004
  • Eighty one bacterial strains of parathion degrading bacteria were isolated from soil samples that were contaminated with pesticide in Daejeon area. Among them, one bacterial strain was finally selected in media containing parathion as the sole source of carbon and energy, and this strain was identified as Pseudomonas rhodesiae H5 through physiological and biochemical tests, and analysis of its 16S rRNA sequence. Pseudomonas rhodesiae H5 was able to utilize various carbohydrates but did not utilize sorbose as sole carbon source. Pseudomonas rhodesiae H5 was resistance to ampicillin, spectinomycin, and mitomycin C but sensitive to kanamycin and chloramphenicol. And this strain showed high resistance up to several milligrams of heavy metals such as $BaCl_2$, LiCl, and $MnSO_4$. Optimal growth condition for temperature and pH of P. rhodesiae H5 was 3$0^{\circ}C$, and pH 7.0, respectively. It can be presumed that P. rhodesiae H5 hydrolyzed an organophosphate bond of parathion, forming p-nitrophenol, and then metabolized via ortho-ring cleavage mechanism.

Altered APP Carboxyl-Terminal Processing Under Ferrous Iron Treatment in PC12 Cells

  • Kim, Chi Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2013
  • Amyloid-${\beta}$ peptide ($A{\beta}$), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of $A{\beta}$ is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM $FeCl_2$, with 0.6 mM $FeCl_2$ treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM $FeCl_2$. APP-${\alpha}$-carboxyl terminal fragment (APP-${\alpha}$-CTF) associations with ADAM10 and APP-${\beta}$-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/ BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-${\alpha}/{\beta}$-CTF activation.

The Principle and Trends of CRISPR/Cas Diagnosis (CRISPR/Cas 진단의 원리와 현황)

  • Park, Jeewoong;Kang, Bong Keun;Shin, Hwa Hui;Shin, Jun Geun
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.125-142
    • /
    • 2021
  • The POCT (point-of-care test) sensing that has been a fast-developing field is expected to be a next generation technology in health care. The POCT sensors for the detection of proteins, small molecules and especially nucleic acids have lately attracted considerable attention. According to the World Health Organization (WHO), the POCT methods are required to follow the ASSURED guidelines (Affordable, Sensitive, Specific, User- friendly, Robust and rapid, Equipment-free, Deliverable to all people who need the test). Recently, several CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based diagnostic techniques using the sensitive gene recognition function of CRISPR have been reported. CRISPR/Cas (Cas, CRISPR associated protein) systems based detection technology is the most innovative gene analysis technology that is following the ASSURED guidelines. It is being re-emerged as a powerful diagnostic tool that can detect nucleic acids due to its characteristics that enable rapid, sensitive and specific analyses of nucleic acid. The first CRISPR-based diagnosis begins with the discovery of the additional function of Cas13a. The enzymatic cleavage occurs when the conjugate of Cas protein and CRISPR RNA (crRNA) detect a specific complementary sequence of the target sequence. Enzymatic cleavage occurs on not only the target sequence, but also all surrounding non-target single-stranded RNAs. This discovery was immediately utilized as a biosensor, and numerous sensor studies using CRISPR have been reported since then. In this review, the concept of CRISPR, the characteristics of the Cas protein required for CRISPR diagnosis, the current research trends of CRISPR diagnostic technology, and some aspects to be improved in the future are covered.