• Title/Summary/Keyword: RNA amplification

Search Result 265, Processing Time 0.025 seconds

Molecular Characterization of Seaweeds Using RAPD and Differential Display

  • HONG Yong-Ki;KIM Yong-Tae;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.770-778
    • /
    • 1996
  • A rapid and economical method of simultaneous extraction of DNA and RNA from seaweeds has been developed by the use of lithium chloride. Lithium chloride facilitates the softening of cell walls resulting in a decrease in both compressive and tensile modulus of elasticity. The DNA was characterized by high molecular weight larger than 27 kb and a relative lack of carbohydrate and protein contamination. The DNA and RNA extracted by the method from many seaweeds were of sufficient quality to be used as a template for per amplification with a plant intergenic gene primer set, for RAPD analysis with arbitrary primers, and for differential display with arbitrary primers in the morphologically distinct regions of the matured Porphyra thallus. The cDNA polymorphism indicated that the reproductive tissue types (male, female, patch) had a relatively high degree of similarity; the vegetative tissue types (dividing, non-dividing) also showed a similar pattern with respect to each other. Holdfast tissue had very low similarity with the other tissues, but appeared most similar to vegetative non-dividing tissue type.

  • PDF

Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript

  • Lee, Hyeon-Woo
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.917-922
    • /
    • 2018
  • The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet $T{\underline{CT}}$ of human TNSFSF9 in HepG2 cells to $T{\underline{AG}}$ to create an amber stop codon. The $T{\underline{CT}}$ triplet is the codon for Ser at the $172^{nd}$ position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the $T{\underline{AG}}$ had been re-edited to the wild type triplet $T{\underline{CT}}$, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.

Transformation of Orchardgrass (Dactylis glomerata L.) with Glutathione Reductase Gene (Glutathione Reductase 유전자의 도입에 의한 오차드그래스의 형질전환)

  • 이효신;배은경;김기용;원성혜;정민섭;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • To develop transgenic orchardgrass resistant to reactive oxygen species produced from environmental stresses, a vector with the cytosolic glutathione reductase cDNA (BcGRl) from Chinese cabbage was constructed under the control of the cauliflower mosaic virus 35S promoter and was introduced into orchardgrass using Agrobacterium tumefaciens EHA101. Transgenic plants from hygromycin-selected calli of orchardgrass did not show any morphological difference from wild-type plants. The results of PCR amplification and genomic Southern blot analysis confirmed the integration of foreign gene into the chromosome of transgenic orchardgrass. Northern blot analysis with total RNA from leaves also confirmed the constitutive expression of BcGR1 in transgenic orchardgrass.

  • PDF

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.

Simultaneous Quantification of Cyanobacteria and Microcystis spp. Using Real-Time PCR

  • Oh, Kyoung-Hee;Jeong, Dong-Hwan;Shin, Seung-Hee;Cho, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.248-255
    • /
    • 2012
  • In order to develop a protocol to quantify cyanobacteria and Microcystis simultaneously, the primers and probe were designed from the conserved regions of 16S rRNA gene sequences of cyanobacteria and Microcystis, respectively. Probe match analysis of the Ribosomal Database Project showed that the primers matched with over 97% of cyanobacterial 16S rRNA genes, indicating these can be used to amplify cyanobacteria specifically. The TaqMan probe, which is located between two primers, matched with 98.2% of sequences in genus GpXI, in which most Microcystis strains are included. The numbers of cyanobacterial genes were estimated with the emission of SYBR Green from the amplicons with two primers, whereas those of Microcystis spp. were measured from the fluorescence of CAL Fluor Gold 540 emitted by exonuclease activity of Taq DNA polymerase in amplification. It is expected that this method enhances the accuracy and reduces the time to count cyanobacteria and potential toxigenic Microcystis spp. in aquatic environmental samples.

Expression of resveratrol synthase gene and accumulation of resveratrol in transgenic potatoes (Solanum tuberosum L.)

  • Yi, Jung Yoon;Seo, Hyo Won;Yun, Song Joong;Ok, HyunChoong;Park, YoungEun;Cho, Ji Hong;Cho, HyunMook
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.385-390
    • /
    • 2009
  • A resveratrol synthase (RS) gene was isolated from peanut (Arachis hypogaea, L. cv. Jinpoong) plants. This gene was placed under the control of the cauliflower mosaic virus 35S promoter (CaMV35S) and introduced into two Korean varieties of potato (Solanum tuberosum L. cvs. Jasim and Jowon) plants by Agrobacterium-mediated gene transfer. Putative transformants were screened by PCR with primers designed from CaMV 35S promoter, NOS terminator and RS gene. Most of selected transgenic potato plants showed the amplification of expected fragments by PCR of genomic DNA with gene-specific primers, while they were absent in untransformed control plants. Expression of the resveratrol synthase gene was also examined by northern blot analysis. The transformants showed a band which was lacking in the control plant, confirming that the introduced gene is transcribed into mRNA in the transformants. The strength of the band, which reflected the level of mRNA expression, differed among the individual transformants. Among the transformants obtained, the highest trans-resveratrol content in the transgenic young leaves of purple-fleshed "Jashim" was $2.11{\mu}gg^{-1}$ fresh weight and that in the microtubers in vitro of purple fleshed "Jashim" was $8.31{\mu}gg^{-1}$ fresh weight. This amount of resveratrol may have a positive biological effect on human health.

Molecular Characterization of the L Segment of Hantaan Virus, Strain Howang (한탄바이러스 호왕주의 L 유전자 절편의 염기서열)

  • Chu, Yong-Kyu;Song, Dae-Yong;Koo, Hyung-Mo;Lee, Ho-Wang
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.3
    • /
    • pp.155-163
    • /
    • 1999
  • Hantaan virus (HTNV), the etiologic agent of hemorrhagic fever with renal syndrome (HFRS), belongs to the genus Hantavirus, and has three single negative stranded RNA genome segments. HTNV strain Howang isolated from the blood of severe case of Korean HFRS is more virulent than HTNV 76/118 and the M and S genome segments' nucleotide sequence of Howang strain showed 93.5% and 94% homology to each segment of HTNV 76/118. We have obtained 6533 nucleotides long sequence of the L genome segment of Howang strain using reverse transcriptase in conjunction with PCR amplification and compared to other hantaviruses. The messenger sense of the L segment contains one long single long open reading frame of 2151 amino acids, which encodes a deduced RNA dependent RNA polymerase of 246.4 kDa caculated molecular weight protein. The nucleotide sequence of the L segment of Howang strain shows 93%, 74%, 66%, 65% homology to HTNV 76/118, Seoul virus 80/39, Puumala virus $H{\ddot{a}}lln{\ddot{a}}s$ B1 and Sin Nombre virus, respectively. The amino acid sequence of the L segment of Howang strain shows 99%, 85%, 68%, 68% homology to HTNV 76/118, Seoul virus 80/39, Puumala virus $H{\ddot{a}}lln{\ddot{a}}s$ B1 and Sin Nombre virus, respectively.

  • PDF

Characterization and Tissues Distribution of Vinculin, Agouti-relating Protein and Melanocortin 4 Receptor Genes in Rainbow Trout, Oncorhynchus mykiss

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2010
  • As in the O. mykiss electrophoretic profiles of RNA, the signals of each RNA sample from 9 individual tissues such as liver, muscle, brain, heart, pituitary gland, kidney, intestine, spleen and gill similar to positive control were obtained. The tissue distributions of the complimentary DNA (cDNA) of O. mykiss four genes were analyzed using quantitative real-time PCR with primer sets for tissue expression analysis. In this rainbow trout species, author obtained bands of various sizes, ranged from 700 bp to 1,400 bp. A dissociation curve was made at the end of each run to make sure that there was no non-specific amplification. Supplementarily, the Ct of each DNA was compared. The Ct values of vinculin with rainbow trout tissues were determined in a manner similar to those for agouti-related protein (AgRP) and melanocortin receptors (MC4R I and MC4R II). Further, obtained Cts for standard curve of each DNA were affected by specific product (vinculin, AgRP and MC4R II genes). After several experiments with four individual genes of rainbow trout, author estimated a variation ratio of the mean Ct value of the DNA extracted using the comparative CTt method was 37.27, and the standard deviation was 5.33. The correlation coefficient between the Ct values and the concentration of cDNA was -0.98, -0.99, -0.91 and -0.86, respectively (vinculin, AgRP, MC4R I and MC4R II genes). Since this correlation showed high linearity, the straight line obtained was used as a standard for the O. mykiss tissues reared in aquarium. A PCR efficiency of 100% is ideally achieved when the slopes are close to the theoretical value of -3.31. According to quantification method, the results of quantification are strongly affected by the DNA fragmentation. The size of most DNA fragments obtained from various tissues of rainbow trout used in the experiment was approximately 100 bp. According to the four slopes, an efficiency of nearly 100% was estimated for four genes detection methods. Additionally, further analysis with more individuals and primers will be required to fully establish optimization in rainbow trout.

D-Limonene mitigate myocardial injury in rats through MAPK/ERK/NF-κB pathway inhibition

  • Younis, Nancy Safwat
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2020
  • Cardiovascular diseases are the primary reason of mortality, among which myocardial infarction (MI) is the most dominant and prevalent. This study was considered to examine D-Limonene protective action against isoproterenol (ISO) induced MI. Wister male rats were dispersed into four groups. Normal and D-Limonene control group in which rats administered saline or D-Limonene. ISO control animals were administered saline for 21 days then challenged with ISO (85 mg/kg, subcutaneously) on 20th and 21st day for MI induction. D-Limonene pretreated group in which animals were pretreated with D-Limonene 50 mg/kg orally for 21 days then administered ISO on 20th and 21st day. MI prompted variations were assessed by myocardial infarction area determination, blood pressure (BP) alterations, cardiac injury biomarkers and inflammatory mediators measurements. For more depth investigation, both the apoptotic status was evaluated via measuring mRNA expression of Bcl-2 and Bax as well as mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signal transduction were investigated via Western blotting. MI group revealed significant infarcted area, blood pressure alterations, myocardial injury enzymes intensification together with inflammatory cytokines amplification. MI was associated with activation of MAPK-ERK signal pathway and apoptotic status within the myocardium. On the other hand, pretreated with D-Limonene demonstrated deterred infracted area, reduced myocardial enzymes, improved BP indices, lessened inflammatory levels. Furthermore, D-Limonene pretreatment caused a decline in MAPK proteins pathway and Bax relative mRNA expression, while intensifying Bcl-2 mRNA expression promoting that D-Limonene may constrain MI induced myocardial apoptosis. D-Limonene mitigated MI injury through MAPK/NF-κB pathway inhibition and anti-apoptotic effect.

Species identification of Dyers woad leaf by DNA sequence of 5S-rRNA spacer domain and random amplified polymorphic DNA (RAPD) analysis

  • Zhao, K.J.;Dong, T.T.X.;Wong, Y.C.;Tu, P.F.;Tsim, K.W.K.
    • Advances in Traditional Medicine
    • /
    • v.5 no.2
    • /
    • pp.117-123
    • /
    • 2005
  • Dyers woad leaf (Daqingye) is a traditional Chinese medicine commonly used as anti-pyretic, anti-bacterial and anti-viral agent against infectious diseases. The Chinese Pharmacopoeia (2005) records that Dyers woad leaf should be derived from the leaves of Isatis indigotica Fort., but the leaves of Polygonum tinctorium Ait., Baphicacanthus cusia (Nees) Bremek. and Clerodendron cyrtophyllum Turcz. have also been used as substitutes of Dyers woad leaf in different regions of China. The leaf morphologies of these four species show a close resemblance, and based on their morphological appearance, it is difficult to identify them. Here, molecular genetic methods were developed as a target to identify different members of Dyers woad leaf. The 5S-rRNA spacer domain was amplified by polymerase chain reaction from genomic DNAs isolated from I. indigotica, P. tinctorium, B. cusia and C. cyrtophyllum, and the nucleotide sequences showed a great diversity. In addition, random amplification of polymorphic DNA analysis was also used to distinguish the members of Dyers woad leaf. These molecular methods could be used as a tool in authentic identification of Dyers woad leaf.