• 제목/요약/키워드: RNA alterations

검색결과 159건 처리시간 0.022초

Association of Salivary Microbiota with Dental Caries Incidence with Dentine Involvement after 4 Years

  • Kim, Bong-Soo;Han, Dong-Hun;Lee, Ho;Oh, Bumjo
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.454-464
    • /
    • 2018
  • Salivary microbiota alterations can correlate with dental caries development in children, and mechanisms mediating this association need to be studied in further detail. Our study explored salivary microbiota shifts in children and their association with the incidence of dental caries with dentine involvement. Salivary samples were collected from children with caries and their subsequently matched caries-free controls before and after caries development. The microbiota was analyzed by 16S rRNA gene-based high-throughput sequencing. The salivary microbiota was more diverse in caries-free subjects than in those with dental caries with dentine involvement (DC). Although both groups exhibited similar shifts in microbiota composition, an association with caries was found by function prediction. Analysis of potential microbiome functions revealed that Granulicatella, Streptococcus, Bulleidia, and Staphylococcus in the DC group could be associated with the bacterial invasion of epithelial cells, phosphotransferase system, and ${\text\tiny{D}}-alanine$ metabolism, whereas Neisseria, Lautropia, and Leptotrichia in caries-free subjects could be associated with bacterial motility protein genes, linoleic acid metabolism, and flavonoid biosynthesis, suggesting that functional differences in the salivary microbiota may be associated with caries formation. These results expand the current understanding of the functional significance of the salivary microbiome in caries development, and may facilitate the identification of novel biomarkers and treatment targets.

Roles of PTEN (Phosphatase and Tensin Homolog) in Gastric Cancer Development and Progression

  • Xu, Wen-Ting;Yang, Zhen;Lu, Nong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 2014
  • Gastric cancer is highly invasive, aggressively malignant, and amongst the most prevalent of all forms of cancer. Despite improved management strategies, early stage diagnosis of gastric cancer and accurate prognostic assessment is still lacking. Several recent reports have indicated that the pathogenesis of gastric cancer involves complex molecular mechanisms and multiple genetic and epigenetic alterations in oncogenes and tumor suppressor genes. Functional inactivation of the tumor suppressor protein PTEN (Phosphatase and Tensin Homolog) has been detected in multiple cases of gastric cancer, and already shown to be closely linked to the development, progression and prognosis of the disease. Inactivation of PTEN can be attributed to gene mutation, loss of heterozygosity, promoter hypermethylation, microRNA- mediated regulation of gene expression, and post-translational phosphorylation. PTEN is also involved in mechanisms regulating tumor resistance to chemotherapy. This review provides a comprehensive analysis of PTEN and its roles in gastric cancer, and emphasizes its potential benefits in early diagnosis and gene therapy-based treatment strategies.

Identification of Biomarkers for Radiation Response Using cDNA Microarray

  • Park, Woong-Yang
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.29-44
    • /
    • 2001
  • DNA damage by physical insult including UV and g-radiation might provoke genetic alterations in cells, which is followed by either acute cell death or tumorigenesis. The responsiveness to g-radiation depends on cellular context of target cells. To understand the mechanisms of checkpoint control, repair and cell death following genotoxic stimu]i, cDNA microarray can provide the gene expression profile. To make a profile of gene expression in irradiated Jurkat T cells, we hybridized the cDNA microarray using cDNA from g-irradiated Jurkat T cells. Jurkat T cells were exposed to 4Gy to 16Gy, and total RNA were extracted at 4 to 24 hrs after irradiation. The hybridization of the microarray to fluorescence-labeled cDNA from treated and untreated cells was analyzed by bioinformatic analysis to address relative changes in expression levels of the genes present in the array. Responses varied widely in different time points, suggesting acute stress response and chronic restoration or cell death. From these results we could select 384 genes related to radiation response in Tcells, and radiation response might be different in various types of cells. Using Radchip, we could separate "the exposed" from control PBMCs. We propose that Radchip might be useful to check the radiation research as well as radiation carcinogenesis.

  • PDF

Radiation-Induced CXCL12 Upregulation via Histone Modification at the Promoter in the Tumor Microenvironment of Hepatocellular Carcinoma

  • Ahn, Hak Jun;Hwang, Soon Young;Nguyen, Ngoc Hoan;Lee, Ik Jae;Lee, Eun Jeong;Seong, Jinsil;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.530-545
    • /
    • 2019
  • Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive $CD133^+/CD24^-$ cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.

Multi-level remodeling of transcriptional landscapes in aging and longevity

  • Lai, Rochelle W.;Lu, Ryan;Danthi, Prakroothi S.;Bravo, Juan I.;Goumba, Alexandre;Sampathkumar, Nirmal Kumar;Benayoun, Berenice A.
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.86-108
    • /
    • 2019
  • In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.

Metabolites of Latilactobacillus curvatus BYB3 and Indole Activate Aryl Hydrocarbon Receptor to Attenuate Lipopolysaccharide-Induced Intestinal Barrier Dysfunction

  • Wang, Xing;Yong, Cheng Chung;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1046-1060
    • /
    • 2022
  • This study aimed to investigate the effects of the metabolites of Latilactobacillus curvatus BYB3 and indole-activated aryl hydrocarbon receptor (AhR) to increase the tight junction (TJ) proteins in an in vitro model of intestinal inflammation. In a Western blot assay, the metabolites of L. curvatus BYB3 reduced the TJ demage in lipoploysaccharide (LPS) stimulated-Caco-2 cells. This reduction was a result of upregulating the expression of TJ-associated proteins and suppressing the nuclear factor-κB signaling. Immunofluorescence images consistently revealed that LPS disrupted and reduced the expression of TJ proteins, while the metabolites of L. curvatus BYB3 and indole reversed these alterations. The protective effects of L. curvatus BYB3 were observed on the intestinal barrier function when measuring transepithelial electrical resistance. Using high-performance liquid chromatography analysis the metabolites, the indole-3-latic acid and indole-3-acetamide concentrations were found to be 1.73±0.27 mg/L and 0.51±0.39 mg/L, respectively. These findings indicate that the metabolites of L. curvatus BYB3 have increasing mRNA expressions of cytochrome P450 1A1 (CYP1A1) and AhR, and may thus be applicable for therapy of various inflammatory gut diseases as postbiotics.

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.

Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model

  • Jae Gwang Song;Daye Mun;Bomi Lee;Minho Song;Sangnam Oh;Jun-Mo Kim;Jungwoo Yang;Younghoon Kim;Hyung Wook Kim
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1044-1054
    • /
    • 2023
  • Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.

한우 난포낭종에서 증가되는 섬유소원 유전자 발현 (Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle)

  • 탁현민;한재희;강다원
    • 한국수정란이식학회지
    • /
    • 제25권1호
    • /
    • pp.29-34
    • /
    • 2010
  • 난포낭종은 소 번식 장애의 주요 원인 중의 하나이며, 다양한 유전자의 변화는 여러 세포와 조직 기능에 영향을 준다. 이러한 유전자 변화는 낭종성 난소에서도 나타날 수 있다. 이온 및 수송체와 관련된 유전자 변화가 한우의 난포낭종을 유발할 수 있을 것이라는 가설 하에 난포낭종성 난포에서 발현 변화를 보이는 유전자를 찾기 위하여 마이크로어레이 분석을 수행하였다. 마이크로어레이 분석 결과, 난포낭종성 난포에서 FGG와 LRP8이 증가하고, SLC44A4, SLC27A5, ANXA8 및 aquaporin 4는 감소하였다. 반정량적 역전사중합효소 연쇄 반응으로 마이크로어레이 분석 결과를 재확인하였다. 6개의 DEG 중 3개의 DEG(FGG, SLC44A4 및 aquaporin 4)는 마이크로어레이 분석 결과와 동일하게 증가와 감소를 보였다. 마이크로어레이와 역전사중합효소 반응에서 동일한 결과를 보이는 3개의 유전자 중 가장 크게 변화를 보인 섬유소원에 중점을 두고 연구를 수행하였다. 마이크로어레이와 역전사중합효소 연쇄 반응은 난포낭종성 난포에서 섬유소원 유전자 발현을 각각 8.4배와 1.7배 증가시켰다. 그러나 난포 및 과립층세포에서 섬유소원의 단백질 양은 웨스턴 블랏 분석으로 분석한 결과, 정상에 비하여 낭종에서 유의한 차이를 보이지 않았다. 본 연구에서 섬유소원은 유전자와 단백질 발현에 있어 상관관계는 보이지 않았지만 섬유소원 유전자는 정상 조직으로부터 난포낭종을 구별하는데 있어서 중요한 생물표지자가 될 수 있는 가능성을 제시한다.