Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.1.296

Multi-level remodeling of transcriptional landscapes in aging and longevity  

Lai, Rochelle W. (Leonard Davis School of Gerontology, University of Southern California)
Lu, Ryan (Leonard Davis School of Gerontology, University of Southern California)
Danthi, Prakroothi S. (Leonard Davis School of Gerontology, University of Southern California)
Bravo, Juan I. (Leonard Davis School of Gerontology, University of Southern California)
Goumba, Alexandre (Leonard Davis School of Gerontology, University of Southern California)
Sampathkumar, Nirmal Kumar (Leonard Davis School of Gerontology, University of Southern California)
Benayoun, Berenice A. (Leonard Davis School of Gerontology, University of Southern California)
Publication Information
BMB Reports / v.52, no.1, 2019 , pp. 86-108 More about this Journal
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Keywords
Aging; Longevity; ncRNA; Transcriptome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cazander G, Jukema GN and Nibbering PH (2012) Complement activation and inhibition in wound healing. Clin Dev Immunol 2012, 534291
2 Franceschi C, Bonafe M, Valensin S (2000) Inflammaging: An Evolutionary Perspective on Immunosenescence. Ann N Y Acad Sci 908, 244-254   DOI
3 Franceschi C and Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 Suppl 1, S4-9   DOI
4 Franceschi C, Garagnani P, Parini P, Giuliani C and Santoro A (2018) Inflammaging: a new immunemetabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14, 576-590   DOI
5 Munn LL (2017) Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med 9, e1370   DOI
6 Bellou V, Belbasis L, Tzoulaki I and Evangelou E (2018) Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS One 13, e0194127   DOI
7 Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG and Orekhov AN (2016) Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int 2016, 9582430
8 Kietzmann T, Petry A, Shvetsova A, Gerhold JM and Gorlach A (2017) The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 174, 1533-1554   DOI
9 Lee CK, Weindruch R and Prolla TA (2000) Geneexpression profile of the ageing brain in mice. Nat Genet 25, 294-297   DOI
10 Sandovici I, Hammerle CM, Cooper WN et al (2016) Ageing is associated with molecular signatures of inflammation and type 2 diabetes in rat pancreatic islets. Diabetologia 59, 502-511   DOI
11 de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS and Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20, 2159-2168   DOI
12 Pincus Z, Smith-Vikos T and Slack FJ (2011) MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 7, e1002306   DOI
13 Maes OC, An J, Sarojini H and Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129, 534-541   DOI
14 Mimura S, Iwama H, Kato K et al (2014) Profile of microRNAs associated with aging in rat liver. Int J Mol Med 34, 1065-1072   DOI
15 Kim JH, Lee BR, Choi ES et al (2017) Reverse Expression of Aging-Associated Molecules through Transfection of miRNAs to Aged Mice. Mol Ther Nucleic Acids 6, 106-115   DOI
16 Fenn AM, Smith KM, Lovett-Racke AE, Guerau-de-Arellano M, Whitacre CC and Godbout JP (2013) Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol Aging 34, 2748-2758   DOI
17 Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG and Prehn JH (2014) Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci 53, 231-241   DOI
18 Somel M, Guo S, Fu N et al (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20, 1207-1218   DOI
19 Takahashi M, Eda A, Fukushima T and Hohjoh H (2012) Reduction of type IV collagen by upregulated miR-29 in normal elderly mouse and klotho-deficient, senescencemodel mouse. PLoS One 7, e48974   DOI
20 Fischer KE, Hoffman JM, Sloane LB et al (2016) A cross-sectional study of male and female C57BL/6Nia mice suggests lifespan and healthspan are not necessarily correlated. Aging (Albany NY) 8, 2370-2391   DOI
21 Dulken B and Brunet A (2015) Stem Cell Aging and Sex: Are We Missing Something? Cell Stem Cell 16, 588-590   DOI
22 Bochkis IM, Przybylski D, Chen J and Regev A (2014) Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep 9, 996-1006   DOI
23 Martins R, Lithgow GJ and Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15, 196-207   DOI
24 Silva-Palacios A, Ostolga-Chavarria M, Zazueta C and Konigsberg M (2018) Nrf2: Molecular and epigenetic regulation during aging. Ageing Res Rev 47, 31-40   DOI
25 Lee JS, Ward WO, Ren H et al (2012) Meta-analysis of gene expression in the mouse liver reveals biomarkers associated with inflammation increased early during aging. Mech Ageing Dev 133, 467-478   DOI
26 White RR, Milholland B, MacRae SL, Lin M, Zheng D and Vijg J (2015) Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics 16, 899   DOI
27 Baumgart M, Priebe S, Groth M et al (2016) Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan. Cell Syst 2, 122-132   DOI
28 Bartling B, Niemann K, Pliquett RU, Treede H and Simm A (2018) Altered gene expression pattern indicates the differential regulation of the immune response system as an important factor in cardiac aging. Exp Gerontol [Epub ahead of print]
29 Avrahami D, Li C, Zhang J et al (2015) Aging-Dependent Demethylation of Regulatory Elements Correlates with Chromatin State and Improved beta Cell Function. Cell Metab 22, 619-632   DOI
30 Friedman RC, Farh KK, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105   DOI
31 Prudencio M, Gonzales PK, Cook CN et al (2017) Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet 26, 3421-3431   DOI
32 Sephton CF, Cenik C, Kucukural A et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286, 1204-1215   DOI
33 Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14, 459-468   DOI
34 Shan X, Chiang PM, Price DL and Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 107, 16325-16330   DOI
35 Rodic N, Sharma R, Sharma R et al (2014) Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers. Am J Pathol 184, 1280-1286   DOI
36 Venkatraman A, He XC, Thorvaldsen JL et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345-349   DOI
37 Choi SW, Kim HW and Nam JW (2018) The small peptide world in long noncoding RNAs. Brief Bioinform, bby055-bby055
38 Smith-Vikos T and Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125, 7-17   DOI
39 Hofmann P, Sommer J, Theodorou K et al (2018) Long non-coding RNA H19 regulates endothelial cell aging via inhibition of Stat3 signaling. Cardiovasc Res 115, 230-242
40 Yo K and Runger TM (2018) The long non-coding RNA FLJ46906 binds to the transcription factors NF-kappaB and AP-1 and regulates expression of aging-associated genes. Aging (Albany NY) 10, 2037-2050   DOI
41 Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73, 3852-3856   DOI
42 Swindell WR, List EO, Berryman DE and Kopchick JJ (2018) Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging (Albany NY) 10, 701-746   DOI
43 Deepa SS, Unnikrishnan A, Matyi S, Hadad N and Richardson A (2018) Necroptosis increases with age and is reduced by dietary restriction. Aging Cell, e12770   DOI
44 Martin-Montalvo A, Mercken EM, Mitchell SJ et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4, 2192   DOI
45 Chen H, Zheng X, Xiao D and Zheng Y (2016) Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 15, 542-552   DOI
46 Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell 58, 870-885   DOI
47 Chen CY and Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415-417   DOI
48 Wang Y and Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172-179   DOI
49 Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 66, 22-37 e29   DOI
50 Gruner H, Cortes-Lopez M, Cooper DA, Bauer M and Miura P (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6, 38907   DOI
51 Chen K, Hu Z, Xia Z, Zhao D, Li W and Tyler JK (2015) The Overlooked Fact: Fundamental Need for Spike-In Control for Virtually All Genome-Wide Analyses. Mol Cell Biol 36, 662-667   DOI
52 Ang YS, Tsai SY, Lee DF et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183-197   DOI
53 Ermolaeva M, Neri F, Ori A and Rudolph KL (2018) Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 19, 594-610   DOI
54 Leeman DS, Hebestreit K, Ruetz T et al (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277-1283   DOI
55 De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM and Kreiling JA (2013) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5, 867-883   DOI
56 Hendrickson PG, Dorais JA, Grow EJ et al (2017) Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet 49, 925-934   DOI
57 Mita P, Wudzinska A, Sun X et al (2018) LINE-1 protein localization and functional dynamics during the cell cycle. Elife 7
58 Wang J, Geesman GJ, Hostikka SL et al (2011) Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 10, 3016-3030   DOI
59 Thomas CA, Tejwani L, Trujillo CA et al (2017) Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 21, 319-331 e318   DOI
60 Panda AC, Grammatikakis I, Kim KM et al (2017) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45, 4021-4035   DOI
61 Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367   DOI
62 Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders. Nature 479, 232-236   DOI
63 Piwecka M, Glazar P, Hernandez-Miranda LR et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526   DOI
64 Vijg J and Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75, 645-668   DOI
65 Loreto ELS and Pereira CM (2017) Somatizing the transposons action. Mobile Genetic Elements 7, 1-9   DOI
66 Kim Y, Nam HG and Valenzano DR (2016) The short-lived African turquoise killifish: an emerging experimental model for ageing. Dis Model Mech 9, 115-129   DOI
67 Bessereau JL (2006) Transposons in C. elegans, WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.70.1, http://www.wormbook.org.
68 Quesneville H, Bergman CM, Andrieu O et al (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1, 166-175
69 Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921   DOI
70 Lu S, Niu Z, Chen Y et al (2018) Repetitive Element DNA Methylation is Associated with Menopausal Age. Aging Dis 9, 435-443   DOI
71 Yu Q, Carbone CJ, Katlinskaya YV et al (2015) Type I Interferon Controls Propagation of Long Interspersed Element-1. J Biol Chem 290, 10191-10199   DOI
72 Valenzano DR, Benayoun BA, Singh PP et al (2015) The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell 163, 1539-1554   DOI
73 Harel I, Benayoun BA, Machado B et al (2015) A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 160, 1013-1026   DOI
74 Wood JG, Jones BC, Jiang N et al (2016) Chromatinmodifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci U S A 113, 11277-11282   DOI
75 von Figura G, Wagner M, Nalapareddy K et al (2011) Regeneration of the exocrine pancreas is delayed in telomere-dysfunctional mice. PLoS One 6, e17122   DOI
76 Reichwald K, Lauber C, Nanda I et al (2009) High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol 10, R16   DOI
77 Yang F and Wang PJ (2016) Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 59, 118-125   DOI
78 Dang W, Steffen KK, Perry R et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802-807   DOI
79 Liu L, Cheung TH, Charville GW et al (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4, 189-204   DOI
80 Lupo G, Nisi PS, Esteve P et al (2018) Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline. Aging Cell 17, e12745   DOI
81 Price FD, von Maltzahn J, Bentzinger CF et al (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20, 1174-1181   DOI
82 Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA and Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5, e201   DOI
83 Sun D, Luo M, Jeong M et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673-688   DOI
84 Kowalczyk MS, Tirosh I, Heckl D et al (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25, 1860-1872   DOI
85 Kizil C, Kyritsis N and Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO Rep 16, 416-426   DOI
86 Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12, 453-457   DOI
87 Elf J, Nilsson D, Tenson T and Ehrenberg M (2003) Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718-1722   DOI
88 Kimchi-Sarfaty C, Oh JM, Kim IW et al (2007) A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525-528   DOI
89 Rosenberg MI and Parkhurst SM (2002) Drosophila Sir2 Is Required for Heterochromatic Silencing and by Euchromatic Hairy/E(Spl) bHLH Repressors in Segmentation and Sex Determination. Cell 109, 447-458   DOI
90 Jiang N, Du G, Tobias E et al (2013) Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging 5, 813-824   DOI
91 Schotta G, Ebert A, Krauss V et al (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21, 1121-1131   DOI
92 De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM and Kreiling JA (2013) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5, 867-883   DOI
93 Tsurumi A and Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics 7, 680-688   DOI
94 Burtner CR and Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11, 567-578   DOI
95 Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217   DOI
96 Mortimer RK and Johnston JR (1959) Life span of individual yeast cells. Nature 183, 1751-1752   DOI
97 Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621   DOI
98 Austad SN and Fischer KE (2016) Sex Differences in Lifespan. Cell Metab 23, 1022-1033   DOI
99 El Assar M, Angulo J and Rodriguez-Manas L (2013) Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 65, 380-401   DOI
100 Ge W, Li D, Gao Y and Cao X (2015) The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 34, 415-431   DOI
101 Yamaoka M, Maeda N, Nakamura S et al (2013) Gene expression levels of S100 protein family in blood cells are associated with insulin resistance and inflammation (Peripheral blood S100 mRNAs and metabolic syndrome). Biochem Biophys Res Commun 433, 450-455   DOI
102 Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159, 709-713   DOI
103 McIlwain DR, Berger T and Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5, a008656   DOI
104 Drummond DA and Wilke CO (2008) Mistranslationinduced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341-352   DOI
105 Zhao F, Yu CH and Liu Y (2017) Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 45, 8484-8492   DOI
106 Cohen E, Zafrir Z and Tuller T (2018) A code for transcription elongation speed. RNA Biol 15, 81-94   DOI
107 Plotkin JB and Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12, 32-42   DOI
108 Schieweck R, Popper B and Kiebler MA (2016) Co-Translational Folding: A Novel Modulator of Local Protein Expression in Mammalian Neurons? Trends Genet 32, 788-800   DOI
109 Gao FB, Richter JD and Cleveland DW (2017) Rethinking Unconventional Translation in Neurodegeneration. Cell 171, 994-1000   DOI
110 Goffena J, Lefcort F, Zhang Y et al (2018) Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 9, 889   DOI
111 Strehler B, Hirsch G, Gusseck D, Johnson R and Bick M (1971) Codon-restriction theory by aging and development. J Theor Biol 33, 429-474   DOI
112 Dittmar KA, Goodenbour JM and Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2, e221   DOI
113 Nakagawa S, Lagisz M, Hector KL and Spencer HG (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 401-409   DOI
114 Solon-Biet SM, McMahon AC, Ballard JW et al (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19, 418-430   DOI
115 Grandison RC, Piper MD and Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061-1064   DOI
116 Ables GP, Brown-Borg HM, Buffenstein R et al (2014) The first international mini-symposium on methionine restriction and lifespan. Front Genet 5, 122
117 Pamplona R and Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757, 496-508   DOI
118 Percharde M, Lin C-J, Yin Y et al (2018) A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell 174, 391-405.e319   DOI
119 Gragnani A, Cezillo MV, da Silva ID, de Noronha SM, Correa-Noronha SA and Ferreira LM (2014) Gene expression profile of cytokines and receptors of inflammation from cultured keratinocytes of burned patients. Burns 40, 947-956   DOI
120 Green CD, Huang Y, Dou X, Yang L, Liu Y and Han J-D J (2017) Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin-Related Factors. Cell Rep 18, 2957-2968   DOI
121 Doolittle WF and Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601-603   DOI
122 Dupressoir A, Lavialle C and Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663-671   DOI
123 Kassiotis G and Stoye JP (2016) Immune responses to endogenous retroelements: taking the bad with the good. Nature reviews. Immunology 16, 207-219   DOI
124 Hurst TP and Magiorkinis G (2015) Activation of the innate immune response by endogenous retroviruses. J Gen Virol 96, 1207-1218   DOI
125 Guo C, Jeong HH, Hsieh YC et al (2018) Tau Activates Transposable Elements in Alzheimer's Disease. Cell Rep 23, 2874-2880   DOI
126 Mackenzie IR and Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21, 693-700   DOI
127 Li W, Jin Y, Prazak L, Hammell M and Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7, e44099   DOI
128 Bartke A and Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63, 189-225   DOI
129 Miller RA, Buehner G, Chang Y, Harper JM, Sigler R and Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging cell 4, 119-125   DOI
130 Richardson BC (2002) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 132, 2401S-2405S   DOI
131 Armstrong VL, Rakoczy S, Rojanathammanee L and Brown-Borg HM (2014) Expression of DNA methyltransferases is influenced by growth hormone in the long-living Ames dwarf mouse in vivo and in vitro. J Gerontol A Biol Sci Med Sci 69, 923-933   DOI
132 Victoria B, Dhahbi JM, Nunez Lopez YO et al (2015) Circulating microRNA signature of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell 14, 1055-1066   DOI
133 Harrison DE, Strong R, Allison DB et al (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273-282   DOI
134 Berchtold NC, Cribbs DH, Coleman PD et al (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105, 15605-15610   DOI
135 Zhang JZ, Gao W, Yang HB, Zhang B, Zhu ZY and Xue YF (2006) Screening for genes essential for mouse embryonic stem cell self-renewal using a subtractive RNA interference library. Stem Cells 24, 2661-2668   DOI
136 Isensee J, Witt H, Pregla R, Hetzer R, Regitz-Zagrosek V and Noppinger PR (2008) Sexually dimorphic gene expression in the heart of mice and men. J Mol Med (Berl) 86, 61-74   DOI
137 Pan Q, Shai O, Lee LJ, Frey BJ and Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40, 1413-1415   DOI
138 Warren LA, Rossi DJ, Schiebinger GR, Weissman IL, Kim SK and Quake SR (2007) Transcriptional instability is not a universal attribute of aging. Aging cell 6, 775-782   DOI
139 Martinez-Jimenez CP, Eling N, Chen HC et al (2017) Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433-1436   DOI
140 Dvinge H (2018) Regulation of alternative mRNA splicing: old players and new perspectives. FEBS Lett 592, 2987-3006   DOI
141 Deschenes M and Chabot B (2017) The emerging role of alternative splicing in senescence and aging. Aging Cell 16, 918-933   DOI
142 Raj T, Li YI, Wong G et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nat Genet 50, 1584-1592   DOI
143 Harries LW, Hernandez D, Henley W et al (2011) Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10, 868-878   DOI
144 Kim IH, Xu J, Liu X et al (2016) Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age (Dordr) 38, 291-302   DOI
145 Krug L, Chatterjee N, Borges-Monroy R et al (2017) Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet 13, e1006635   DOI
146 Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297   DOI
147 Yang J, Huang T, Petralia F et al (2015) Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep 5, 15145   DOI
148 Harris RA, Tindale L and Cumming RC (2014) Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology 15, 559-577   DOI
149 Rodwell GE, Sonu R, Zahn JM et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2, e427   DOI
150 Maquart FX and Monboisse JC (2014) Extracellular matrix and wound healing. Pathol Biol (Paris) 62, 91-95   DOI
151 Labonte B, Engmann O, Purushothaman I et al (2017) Sex-specific transcriptional signatures in human depression. Nat Med 23, 1102-1111   DOI
152 Qureshi IA and Mehler MF (2010) Genetic and epigenetic underpinnings of sex differences in the brain and in neurological and psychiatric disease susceptibility. Prog Brain Res 186, 77-95   DOI
153 Yang X, Schadt EE, Wang S et al (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16, 995-1004   DOI
154 Mayne BT, Bianco-Miotto T, Buckberry S et al (2016) Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans. Front Genet 7, 183
155 Pomatto LC, Carney C, Shen B et al (2017) The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Curr Biol 27, 1-15   DOI
156 Estep PW, 3rd Warner JB and Bulyk ML (2009) Short-term calorie restriction in male mice feminizes gene expression and alters key regulators of conserved aging regulatory pathways. PLoS One 4, e5242   DOI
157 Baumgart M, Groth M, Priebe S et al (2014) RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. Aging Cell 13, 965-974   DOI
158 Stilling RM, Benito E, Gertig M et al (2014) Deregulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Front Cell Neurosci 8, 373
159 Tollervey JR, Wang Z, Hortobagyi T et al (2011) Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 21, 1572-1582   DOI
160 Mazin P, Xiong J, Liu X, Yan Z et al (2013) Widespread splicing changes in human brain development and aging. Mol Syst Biol 9, 633   DOI
161 Liu L, Cheung TH, Charville GW et al (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell reports 4, 189-204   DOI
162 Sun D, Luo M, Jeong M et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell stem cell 14, 673-688   DOI
163 Kawakami K, Nakamura A and Goto S (2012) Dietary restriction increases site-specific histone H3 acetylation in rat liver: possible modulation by sirtuins. Biochem Biophys Res Commun 418, 836-840   DOI
164 Gokarn R, Solon-Biet SM, Cogger VC et al (2018) Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice. J Gerontol A Biol Sci Med Sci 73, 1618-1625
165 Zullo A, Simone E, Grimaldi M et al (2018) Effect of nutrient deprivation on the expression and the epigenetic signature of sirtuin genes. Nutr Metab Cardiovasc Dis 28, 418-424   DOI
166 Levin HL and Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12, 615-627   DOI
167 McClintock B (1953) Induction of Instability at Selected Loci in Maize. Genetics 38, 579-599   DOI
168 Biemont C and Vieira C (2006) Junk DNA as an evolutionary force. Nature 443, 521   DOI
169 Sotero-Caio CG, Platt RN 2nd, Suh A and Ray DA (2017) Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 9, 161-177   DOI
170 Enomoto H, Bando Y, Nakamura H, Nishiguchi S and Koga M (2015) Liver fibrosis markers of nonalcoholic steatohepatitis. World J Gastroenterol 21, 7427-7435   DOI
171 Kim JW, Ko SH, Cho JH et al (2008) Loss of beta-cells with fibrotic islet destruction in type 2 diabetes mellitus. Front Biosci 13, 6022-6033
172 Pibiri M, Sulas P, Leoni VP et al (2015) Global gene expression profile of normal and regenerating liver in young and old mice. Age (Dordr) 37, 9796   DOI
173 Lu L, Zhu C, Xia B and Yi C (2014) Oxidative demethylation of DNA and RNA mediated by non-heme iron-dependent dioxygenases. Chem Asian J 9, 2018-2029   DOI
174 Chandra R and Liddle RA (2013) Modulation of pancreatic exocrine and endocrine secretion. Curr Opin Gastroenterol 29, 517-522   DOI
175 Riera CE, Huising MO, Follett P et al (2014) TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157, 1023-1036   DOI
176 Ugalde AP, Ramsay AJ, de la Rosa J et al (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 30, 2219-2232   DOI
177 Ripa R, Dolfi L, Terrigno M et al (2017) MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 15, 9   DOI
178 Terzibasi Tozzini E, Savino A, Ripa R, Battistoni G, Baumgart M and Cellerino A (2014) Regulation of microRNA expression in the neuronal stem cell niches during aging of the short-lived annual fish Nothobranchius furzeri. Front Cell Neurosci 8, 51   DOI
179 Heid J, Cencioni C, Ripa R et al (2017) Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Sci Rep 7, 16839   DOI
180 Hadad N, Unnikrishnan A, Jackson JA et al (2018) Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. Neurobiol Aging 67, 53-66   DOI
181 Schafer MJ, Dolgalev I, Alldred MJ, Heguy A and Ginsberg SD (2015) Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures. PLoS One 10, e0133923   DOI
182 Gong H, Qian H, Ertl R et al (2015) Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget 6, 15882-15890   DOI
183 Xin Y, Okamoto H, Kim J et al (2016) Single-Cell RNAseq Reveals That Pancreatic beta-Cells From Very Old Male Mice Have a Young Gene Signature. Endocrinology 157, 3431-3438   DOI
184 Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9, e1003777   DOI
185 Hsu MT and Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339-340   DOI
186 Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733   DOI
187 Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141-157   DOI
188 Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9, 1966-1980   DOI
189 Cortes-Lopez M, Gruner MR, Cooper DA et al (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19, 8   DOI
190 Lu C, Sun X, Li N et al (2018) CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (Albany NY) 10, 833-852   DOI
191 Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64, 607-613   DOI
192 Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388   DOI
193 Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30, 4414-4422   DOI
194 Treangen TJ and Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13, 36-46   DOI
195 Rebollo R, Romanish MT and Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46, 21-42   DOI
196 Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49-63   DOI
197 Kidwell MG and Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 94, 7704-7711   DOI
198 Bao W, Kojima KK and Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11   DOI
199 Rhoads A and Au KF (2015) PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics 13, 278-289   DOI
200 Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC and McCombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25, 1750-1756   DOI
201 Valenzano DR, Kirschner J, Kamber RA et al (2009) Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri. Genetics 183, 1385-1395   DOI
202 Reichenbacher B and Reichard M (2014) Otoliths of five extant species of the annual killifish Nothobranchius from the East African savannah. PLoS One 9, e112459   DOI
203 Valdesalici S and Cellerino A (2003) Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci 270 Suppl 2, S189-191   DOI
204 Kirschner J, Weber D, Neuschl C et al (2012) Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri--a new vertebrate model for age research. Aging Cell 11, 252-261   DOI
205 Terzibasi E, Valenzano DR, Benedetti M et al (2008) Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One 3, e3866   DOI
206 Reichwald K, Petzold A, Koch P et al (2015) Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell 163, 1527-1538   DOI
207 Di Cicco E, Tozzini ET, Rossi G and Cellerino A (2011) The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol 46, 249-256   DOI
208 Pal S and Tyler JK (2016) Epigenetics and aging. Sci Adv 2, e1600584   DOI
209 Benayoun BA, Pollina EA and Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16, 593-610   DOI
210 Booth LN and Brunet A (2016) The Aging Epigenome. Mol Cell 62, 728-744   DOI
211 Sen P, Shah PP, Nativio R and Berger SL (2016) Epigenetic Mechanisms of Longevity and Aging. Cell 166, 822-839   DOI
212 Sturm A, Ivics Z and Vellai T (2015) The mechanism of ageing: primary role of transposable elements in genome disintegration. Cellular and Molecular Life Sciences 72, 1839-1847   DOI
213 Wood J and Helfand S (2013) Chromatin structure and transposable elements in organismal aging. Front Genet 4, Article 274
214 Takeda T and Tanabe H (2016) Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 471, 454-458   DOI
215 Boehm M and Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954-1957   DOI
216 Ha M and Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 509-524   DOI
217 Reis FC, Branquinho JL, Brandao BB et al (2016) Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging (Albany NY) 8, 1201-1222   DOI
218 Lyu G, Guan Y, Zhang C et al (2018) TGF-${\beta}$ signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Communs 9, 2560   DOI
219 Alvager T, Graham G, Hilleke R, Hutchison D and Westgard J (1989) On the information content of the genetic code. Biosystems 22, 189-196   DOI
220 Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56, 55-66   DOI
221 Tan MH, Li Q, Shanmugam R et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249-254   DOI
222 Terzibasi E, Valenzano DR and Cellerino A (2007) The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp Gerontol 42, 81-89   DOI
223 Terzibasi E, Lefrancois C, Domenici P, Hartmann N, Graf M and Cellerino A (2009) Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging cell 8, 88-99   DOI
224 Liu N, Lee CH, Swigut T et al (2017) Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228   DOI
225 Stetson DB and Medzhitov R (2006) Type I Interferons in Host Defense. Immunity 25, 373-381   DOI
226 Cuellar TL, Herzner A-M, Zhang X et al (2017) Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J Cell Biol 216, 3535-3549   DOI
227 Li W, Prazak L, Chatterjee N et al (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16, 529-531   DOI
228 Ross RJ, Weiner MM and Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353-359   DOI
229 Perrat PN, DasGupta S, Wang J et al (2013) Transposition-Driven Genomic Heterogeneity in the Drosophila Brain. Science 340, 91-95   DOI
230 Teixeira FK, Okuniewska M, Malone CD, Coux R-X, Rio DC and Lehmann R (2017) piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552, 268   DOI
231 Martinez G (2018) tRNA-derived small RNAs: New players in genome protection against retrotransposons. RNA Biol 15, 170-175   DOI
232 Enge M, Arda HE, Mignardi M et al (2017) Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell 171, 321-330 e314   DOI
233 Macosko EZ, Basu A, Satija R et al (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214   DOI
234 Deng Q, Ramskold D, Reinius B and Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196   DOI
235 Arda HE, Li L, Tsai J et al (2016) Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human beta Cell Function. Cell Metab 23, 909-920   DOI
236 Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11, 163-166   DOI
237 Wang T, Tsui B, Kreisberg JF et al (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18, 57   DOI
238 Cole JJ, Robertson NA, Rather MI et al (2017) Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 18, 58   DOI
239 Koubova J and Guarente L (2003) How does calorie restriciton work? Genes Dev 17, 313-321   DOI
240 Fontana L and Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106-118   DOI
241 Katewa SD and Kapahi P (2010) Dietary restriction and aging, 2009. Aging Cell 9, 105-112   DOI
242 Kwon NH, Lee MR, Kong J et al (2017) Transfer-RNAmediated enhancement of ribosomal proteins S6 kinases signaling for cell proliferation. RNA Biol, 1-14
243 Li Y, Daniel M and Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9, 98   DOI
244 Sagi D, Rak R, Gingold H et al (2016) Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 12, e1006264   DOI
245 Gingold H, Tehler D, Christoffersen NR et al (2014) A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281-1292   DOI
246 Kumar P, Kuscu C and Dutta A (2016) Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends Biochem Sci 41, 679-689   DOI
247 Kim HK, Fuchs G, Wang S et al (2017) A transfer-RNAderived small RNA regulates ribosome biogenesis. Nature 552, 57-62   DOI
248 Arimbasseri AG and Maraia RJ (2016) RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends Biochem Sci 41, 546-559   DOI
249 Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH and Lee YS (2017) Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 9, 171-187   DOI
250 Oler AJ, Alla RK, Roberts DN et al (2010) Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 17, 620-628   DOI
251 Filer D, Thompson MA, Takhaveev V et al (2017) RNA polymerase III limits longevity downstream of TORC1. Nature 552, 263-267   DOI
252 El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M and Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275, 223-228   DOI
253 Bates DJ, Li N, Liang R et al (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9, 1-18   DOI
254 Aliper A, Jellen L, Cortese F et al (2017) Towards natural mimetics of metformin and rapamycin. Aging (Albany NY) 9, 2245-2268   DOI
255 Roth GS and Ingram DK (2016) Manipulation of health span and function by dietary caloric restriction mimetics. Ann N Y Acad Sci 1363, 5-10   DOI
256 Hall MN (2008) mTOR-what does it do? Transplant Proc 40, S5-8   DOI
257 Wilkinson JE, Burmeister L, Brooks SV et al (2012) Rapamycin slows aging in mice. Aging cell 11, 675-682   DOI
258 Leff T (2003) AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem Soc Trans 31, 224-227   DOI
259 Vinuela A, Snoek LB, Riksen JA and Kammenga JE (2010) Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res 20, 929-937   DOI
260 Southworth LK, Owen AB and Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5, e1000776   DOI
261 Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476   DOI
262 Bahar R, Hartmann CH, Rodriguez KA et al (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011-1014   DOI
263 Maier T, Guell M and Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583, 3966-3973   DOI
264 Ori A, Toyama BH, Harris MS et al (2015) Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats. Cell Syst 1, 224-237   DOI
265 Goff LA and Rinn JL (2015) Linking RNA biology to lncRNAs. Genome Res 25, 1456-1465   DOI
266 Rhoads TW, Burhans MS, Chen VB et al (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27, 677-688.e675   DOI
267 Lee BP, Pilling LC, Emond F et al (2016) Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 15, 903-913   DOI
268 Heintz C, Doktor TK, Lanjuin A et al (2017) Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 541, 102-106   DOI
269 Ruiz-Orera J, Messeguer X, Subirana JA and Alba MM (2014) Long non-coding RNAs as a source of new peptides. Elife 3, e03523   DOI
270 Bao J, Chen M, Zhong Z et al (2017) PacBio Sequencing Reveals Transposable Elements as a Key Contributor to Genomic Plasticity and Virulence Variation in Magnaporthe oryzae. Mol Plant 10, 1465-1468   DOI
271 Debladis E, Llauro C, Carpentier MC, Mirouze M and Panaud O (2017) Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics 18, 537   DOI