• Title/Summary/Keyword: RNA alterations

Search Result 159, Processing Time 0.023 seconds

Unchanged Protein Level of Ryanodine Receptor but Reduced $[^3H]$ Ryanodine Binding of Cardiac Sarcoplasmic Reticulum from Diabetic Cardiomyopathy Rats

  • Lee, Eun-Hee;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.397-405
    • /
    • 2001
  • The ryanodine receptor, a $Ca^{2+}$ release channel of the sarcoplasmic reticulum (SR), is responsible for the rapid release of $Ca^{2+}$ that activates cardiac muscle contraction. In the excitation-contraction coupling cascade, activation of SR $Ca^{2+}$ release channel is initiated by the activity of sarcolemmal $Ca^{2+}$ channels, the dihydropyridine receptors. Previous study showed that the relaxation defect of diabetic heart was due to the changes of the expressional levels of SR $Ca^{2+}$ATPase and phospholamban. In the diabetic heart contractile abnormalities were also observed, and one of the mechanisms for these changes could include alterations in the expression and/or activity levels of various $Ca^{2+}$ regulatory proteins involving cardiac contraction. In the present study, underlying mechanisms for the functional derangement of the diabetic cardiomyopathy were investigated with respect to ryanodine receptor, and dihydropyridine receptor at the transcriptional and translational levels. Quantitative changes of ryanodine receptors and the dihydropyridine receptors, and the functional consequences of those changes in diabetic heart were investigated. The levels of protein and mRNA of the ryanodine receptor in diabetic rats were comparable to these of the control. However, the binding capacity of ryanodine was significantly decreased in diabetic rat hearts. Furthermore, the reduction in the binding capacity of ryanodine receptor was completely restored by insulin. This result suggests that there were no transcriptional and translational changes but functional changes, such as conformational changes of the $Ca^{2+}$ release channel, which might be regulated by insulin. The protein level of the dihydropyridine receptor and the binding capacity of nitrendipine in the sarcolemmal membranes of diabetic rats were not different as compared to these of the control. In conclusion, in diabetic hearts, $Ca^{2+}$ release processes are impaired, which are likely to lead to functional derangement of contraction of heart. This dysregulation of intracellular $Ca^{2+}$ concentration could explain for clinical findings of diabetic cardiomyopathy and provide the scientific basis for more effective treatments of diabetic patients. In view of these results, insulin may be involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte via unknown mechanism, which needs further study.

  • PDF

Molecular Identification and Sequence Analysis of Coat Protein Gene of Ornithogalum mosaic virus Isolated from Iris Plant

  • Yoon, Hye-In;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.251-258
    • /
    • 2002
  • A potyvirus was isolated from cultivated Iris plants showing leaf streak mosaic symptom. Reverse transcription and polymerase chain reaction (RT-PCR) product of 1 kb long which encoded partial nuclear inclusion B and N-terminal region of viral coat protein (CP) genes for potyviruses was successfully amplified with a set of potyvirus-specific degenerate primers with viral RNA samples from the infected leaves: The RT-PCR product was cloned into the plasmid vector and its nucleotide sequences were determined. The nucleotide sequence of a CDNA clone revealed that the virus was an isolate of Ornithogalum moseic virus (OrMV) based on BLAST search analysis and was denoted as OrMV Korean isolate (OrMV-Ky). To further characterize the CP gene of the virus, a pair of OrMV-specific primers was designed and used for amplification of the entire CP gene of OrMV-Kr, The virus was easily and reliably detected from virus-infected Iris leaves by using the RT-PCR with the set of virus-specific primers. The RT-PCR product of the CP gene of the virus was cloned and its sequences were determined from selected recombinant CDNA clones. Sequence analysis revealed that the CP of OrMV-Kr consisted of 762 nucleotides, which encoded 253 amino acid residues. The CP of OrMV-Ky has 94.1-98.0% amino acid sequence identities (20 amino acid alterations) with that of other three isolates of OrMV, Two NT rich potential N-glycosylation motif sequences, NCTS and NWTM, and a DAC triple box responsible for aphid transmission were conserved in CPs of all the strains of OrMV. The virus has 58.5-86.2% amino acid sequence identities with that of other 16 potyviruses, indicating OrMV to be a distinct species of the genus. OrMV-Ky was the most related with Pterostylia virus Yin the phylogenetic tree analysis of CP at the amino acid level. This is the first report on the occurrence of OrMV in Iris plants in Korea. Data in this study indicate that OrMV is found in cultivated Iris plants, and may have mixed infection of OrMV and Iris severe mosaic virus in Korea.

Advanced Onset of Puberty in High-Fat Diet-Fed Immature Female Rats - Activation of KiSS-1 and GnRH Expression in the Hypothalamus -

  • Lee, Song-Yi;Jang, Yeon-Seok;Lee, Yong-Hyun;Seo, Hyang-Hee;Noh, Kum-Hee;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.183-190
    • /
    • 2009
  • In mammals, puberty is a dynamic transition process from infertile immature state to fertile adult state. The neuroendocrine aspect of puberty is started with functional activation of hypothalamus-pituitary-gonadal hormone axis. The timing of puberty can be altered by many factors including hormones and/or hormone-like materials, social cues and metabolic signals. For a long time, attainment of a particular body weight or percentage of body fat has been thought as crucial determinant of puberty onset. However, the precise effect of high-fat (HF) diet on the regulation of hypothalamic GnRH neuron during prepubertal period has not been fully elucidated yet. The present study was undertaken to test the effect of a HF diet on the puberty onset and hypothalamic gene expressions in immature female rats. The HF diet (45% energy from fat, HF group) was applied to female rats from weaning to around puberty onset (postnatal days, PND 22-40). Body weight and vaginal opening (VO) were checked daily during the entire feeding period. In the second experiment, all animals were sacrificed on PND 36 to measure the weights of reproductive tissues. Histological studies were performed to assess the effect of HF diet feeding on the structural alterations in the reproductive tissues. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Body weights of HF group animals tend to be higher than those of control animals between PND 22 and PND 31, and significant differences were observed PND 32, PND 34, PND 35 and PND 36 (p<0.05). Advanced VO was shown in the HF group (PND $32.8{\pm}0.37$ p<0.001) compared to the control (PND $38.25{\pm}0.25$). The weight of ovaries (p<0.01) and uteri (p<0.05) from HF group animals significantly increased when compared to those from control animals. Corpora lutea were observed in the ovaries from the HF group animals but not in control ovaries. Similarly, hypertrophy of luminal and glandular uterine epithelia was found only in the HF group animals. In the semi-quantitative RT-PCR studies, the transcriptional activities of KiSS-1 in HF group animals were significantly higher than those from the control animals (p<0.001). Likewise, the mRNA levels of GnRH (p<0.05) were significantly elevated in HF group animals. The present study indicated that the feeding HF diet during the post-weaning period activates the upstream modulators of gonadotropin such as GnRH and KiSS-1 in hypothalamus, resulting early onset of puberty in immature female rats.

  • PDF

Extrahypothalamic Expression of Rat Growth Hormone Releasing Hormone (GHRH);a possible intrapituitary factor for lactotroph differentiation? (흰쥐의 시상하부외 지역에서의 Growth Hormone Releasing Hormone (GHRH) 유전자발현;뇌하수체내 국부인자로서 Lactotroph분화에 관여할 가능성에 대하여)

  • Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.269-275
    • /
    • 1996
  • Biosynthesis and secretion of anterior pituitary hormones are under the control of specific hypothalamic stimulatory and inhibitory factors. Among them, Growth Hormone Releasing Hormone (GHRH) is the major stimulator of pituitary somatotrophs activating GH gene expression and secretion. Human GHRH is a polypeptide of 44 amino acids initially isolated from pancreatic tumors, and the gene for the hypothalamic form of GHRH is organized into 5 exons spanning over 10 kilobases (kb) on genomic DNA and encodes a messenger RNA of 700-750 nucleotides. Several neuropeptides classically associated with the hypothalamus have been found in the extrahypothalamic regions, suggesting the existence of novel sources, targets and functions. GHRH-like immunoreactivity has been found in several peripheral sites, including placenta, testis, and ovary, indicating that GHRH may also have regulatory roles in peripheral reproductive organs. Furthermore, higher molecular weight forms of the GHRH transcripts were identified from these organs (1.75 kb in testis; 1.75 and >3 kb in ovary). These tissue-specific expression of GHRH gene suggest the existence of unique regulatory mechanism of GHRH expression and function in these organs. In fact, placenta-specific and testis-specific promoters for GHRH transcripts which are located in about 10 kb upstream region of hypothalamic promoter were reported. The use of unique promoters in extrahypothalamic sites could be refered in a different control of GHRH gene and different functions of the translated products in these tissues. Somatotrophs and lactotrophs have been thought to be derived from a common bipotential progenitor, the somatolactotrophs, which give origins to either phenotypes. Although the precise mechanism responsible for the lactotroph differentiation in the anterior pituitary gland has not been yet clalified, there are several candidators for the generation of lactotrophs. In human, the presence of GHRH peptides with different size from authentic hypothalamic form in the normal anterior pituitary and several types of adenoma were demonstrated. Recently our group found the existence of immunoreactive GHRH and its transcript from the normal rat anterior pituitary (gonadotroph> somatotroph> lactotroph), and the GHRH treatment evoked the increased proliferation rate of anterior pituitary cells in vitro. The transgenic mouse models clearly shown that GHRH or NGF overexpression by anterior pituitary cells induced development of pituitary hyperplasia and adenomas particularly GH-oma and prolactinoma. Taken together, we hypothesize that the pituitary GHRH could serve not only as a modulator of hormone secretion but as a paracrine or autocrine regulator of anterior pituitary cell proliferation and differentiation. Interestingly enough, the expression of Pit-1 homeobox gene (the POU class transcription factor) was confined to somatotrophs, lactotrophs and somatolactotrophs in which GHRH receptors are expressed commonly. Concerning the mechanism of somatolactotroph and lactotroph differentiation in the anterior pituitary, we have focused following two possibilities; (1) changes in the relative levels or interactions of both hypothalamic and intrapituitary factors such as dopamine, VIP, somatostatin, NGF and GHRH; (2) alterations of GHRH-GHRH receptor signaling and Pit-1 activity may be the cause of lactotroph differentiation or pituitary hyperplasia and adenoma formation. Extensive further studies will be necessary to solve these complicated questions.

  • PDF

eRF1aMC and $Mg^{2+}$ Dependent Structure Switch of GTP Binding to eRF3 in Euplotes octocarinatus

  • Song, Li;Jia, Yu-Xin;Zhu, Wen-Si;Chai, Bao-Feng;Liang, Ai-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.176-183
    • /
    • 2012
  • Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of $Mg^{2+}$. Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C eRF1a GTP and eRF3C eRF1aMC GTP complexes were further altered upon the addition of $Mg^{2+}$. By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and $Mg^{2+}$, whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Severe choline deficiency induces alternative splicing aberrance in optimized duck primary hepatocyte cultures

  • Zhao, Lulu;Cai, Hongying;Wu, Yongbao;Tian, Changfu;Wen, Zhiguo;Yang, Peilong
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1787-1799
    • /
    • 2022
  • Objective: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority. Whereas limitations to traditional hepatocytes culture technology exist in terms of efficiency and operability. This study pursued an optimization culture method for duck primary hepatocytes to explore AS in choline-deficient model. Methods: We performed an optimization culture method for duck primary hepatocytes with multi-step digestion procedure from Pekin duck embryos. Subsequently a NAFLD model was constructed with choline-free medium. RNA-seq and further analysis by rMATS were performed to identify AS events alterations in choline-deficency duck primary hepatocytes. Results: The results showed E13 (embryonic day 13) to E15 is suitable to obtain hepatocytes, and the viability reached over 95% by trypan blue exclusion assay. Primary hepatocyte retained their biological function as well identified by Periodic Acid-Schiff staining method and Glucose-6-phosphate dehydrogenase activity assay, respectively. Meanwhile, genes of alb and afp and specific protein of albumin were detected to verify cultured hepatocytes. Immunofluorescence was used to evaluate purity of hepatocytes, presenting up to 90%. On this base, choline-deficient model was constructed and displayed significantly increase of intracellular triglyceride and cholesterol as reported previously. Intriguingly, our data suggested that AS events in choline-deficient model were implicated in pivotal biological processes as an aberrant transcriptional regulator, of which 16 genes were involved in lipid metabolism and highly enriched in glycerophospholipid metabolism. Conclusion: An effective and rapid protocol for obtaining duck primary hepatocytes was established, by which our findings manifested choline deficiency could induce the accumulation of lipid and result in aberrant AS events in hepatocytes, providing a novel insight into various AS in the metabolism role of choline.

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong ;Liangliang Kong ;Lei Huang ;Yong Su ;Xuewang Li;Liu Yang;Pengmin Ji ;Weiping Li ;Weizu Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.458-468
    • /
    • 2023
  • Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.

The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model (고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과)

  • Min-Jin Cho;Song-Yi Han;Soo Kyoung Lim;Eun-Ji Song;Young-Do Nam;Hojun Kim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

Tobacco Smoking Could Accentuate Epithelial-Mesenchymal Transition and Th2-Type Response in Patients With Chronic Rhinosinusitis With Nasal Polyps

  • Ki-Il Lee;Younghwan Han;Jae-Sung Ryu;Seung Min In;Jong-Yeup Kim;Joong Su Park;Jong-Seok Kim;Juhye Kim;Jubin Youn;Seok-Rae Park
    • IMMUNE NETWORK
    • /
    • v.22 no.4
    • /
    • pp.35.1-35.16
    • /
    • 2022
  • Tobacco smoking (TS) has been known as one of the most potent risk factors for airway inflammatory diseases. However, there has been a paucity of information regarding the immunologic alteration mediated by TS in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). To identify the effect of TS, we harvested human tissue samples (never smoker: n=41, current smoker: n=22, quitter: n=23) and analyzed the expression of epithelial-derived cytokines (EDCs) such as IL-25, IL-33, and thymic stromal lymphopoietin. The expressions of Th2 cytokines and total serum IgE showed a type-2 inflammatory alteration by TS. In addition, the epithelial marker E-cadherin and epithelial-mesenchymal transition (EMT)-associated markers (N-cadherin, α-SMA, and vimentin) were evaluated. Histological analysis showed that EDC expressions were upregulated in the current smoker group and downregulated in the quitter group. These expression patterns were consistent with mRNA and protein expression levels. We also found that the local Th2 cytokine expression and IgE class switching, as well as serum IgE levels, were elevated in the current smoker group and showed normal levels in the quitter group. Furthermore, the expressions of E-cadherin decreased while those of N-cadherin, α-SMA, and vimentin increased in the current smoker group compared those in the never smoker group. Taken together, these results indicate that TS contributes to the deterioration of pathogenesis by releasing local EDCs and Th2 cytokines, resulting in EMT in patients with CRSwNP. We verified that alterations of immunological response by TS in sinonasal epithelium can play a vital role in leading to CRSwNP.