DOI QR코드

DOI QR Code

Tobacco Smoking Could Accentuate Epithelial-Mesenchymal Transition and Th2-Type Response in Patients With Chronic Rhinosinusitis With Nasal Polyps

  • Ki-Il Lee (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University) ;
  • Younghwan Han (Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University) ;
  • Jae-Sung Ryu (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University) ;
  • Seung Min In (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University) ;
  • Jong-Yeup Kim (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University) ;
  • Joong Su Park (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University) ;
  • Jong-Seok Kim (Myunggok Medical Research Institute, College of Medicine, Konyang University) ;
  • Juhye Kim (Department of Medicine, College of Medicine, Konyang University) ;
  • Jubin Youn (Department of Medicine, College of Medicine, Konyang University) ;
  • Seok-Rae Park (Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University)
  • Received : 2021.11.10
  • Accepted : 2022.06.08
  • Published : 2022.08.31

Abstract

Tobacco smoking (TS) has been known as one of the most potent risk factors for airway inflammatory diseases. However, there has been a paucity of information regarding the immunologic alteration mediated by TS in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). To identify the effect of TS, we harvested human tissue samples (never smoker: n=41, current smoker: n=22, quitter: n=23) and analyzed the expression of epithelial-derived cytokines (EDCs) such as IL-25, IL-33, and thymic stromal lymphopoietin. The expressions of Th2 cytokines and total serum IgE showed a type-2 inflammatory alteration by TS. In addition, the epithelial marker E-cadherin and epithelial-mesenchymal transition (EMT)-associated markers (N-cadherin, α-SMA, and vimentin) were evaluated. Histological analysis showed that EDC expressions were upregulated in the current smoker group and downregulated in the quitter group. These expression patterns were consistent with mRNA and protein expression levels. We also found that the local Th2 cytokine expression and IgE class switching, as well as serum IgE levels, were elevated in the current smoker group and showed normal levels in the quitter group. Furthermore, the expressions of E-cadherin decreased while those of N-cadherin, α-SMA, and vimentin increased in the current smoker group compared those in the never smoker group. Taken together, these results indicate that TS contributes to the deterioration of pathogenesis by releasing local EDCs and Th2 cytokines, resulting in EMT in patients with CRSwNP. We verified that alterations of immunological response by TS in sinonasal epithelium can play a vital role in leading to CRSwNP.

Keywords

Acknowledgement

This work was supported by Konyang University Myunggok Research Fund of 2019. And, this research was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST) (NRF-2017R1A6A1A03015713).

References

  1. DeConde AS, Soler ZM. Chronic rhinosinusitis: epidemiology and burden of disease. Am J Rhinol Allergy 2016;30:134-139. https://doi.org/10.2500/ajra.2016.30.4297
  2. Banerji A, Piccirillo JF, Thawley SE, Levitt RG, Schechtman KB, Kramper MA, Hamilos DL. Chronic rhinosinusitis patients with polyps or polypoid mucosa have a greater burden of illness. Am J Rhinol 2007;21:19-26. https://doi.org/10.2500/ajr.2007.21.2979
  3. Campbell AP, Hoehle LP, Phillips KM, Caradonna DS, Gray ST, Sedaghat AR. Smoking: An independent risk factor for lost productivity in chronic rhinosinusitis. Laryngoscope 2017;127:1742-1745. https://doi.org/10.1002/lary.26548
  4. Sahin-Yilmaz A, Naclerio RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc 2011;8:31-39. https://doi.org/10.1513/pats.201007-050RN
  5. Liao B, Cao PP, Zeng M, Zhen Z, Wang H, Zhang YN, Hu CY, Ma J, Li ZY, Song J, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy 2015;70:1169-1180. https://doi.org/10.1111/all.12667
  6. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001;15:985-995. https://doi.org/10.1016/S1074-7613(01)00243-6
  7. Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis. Immune Netw 2017;17:60-67. https://doi.org/10.4110/in.2017.17.1.60
  8. Kim DW, Cho SH. Emerging endotypes of chronic rhinosinusitis and its application to precision medicine. Allergy Asthma Immunol Res 2017;9:299-306. https://doi.org/10.4168/aair.2017.9.4.299
  9. Ahern S, Cervin A. Inflammation and endotyping in chronic rhinosinusitis-a paradigm shift. Medicina (Kaunas) 2019;55:95.
  10. St-Laurent J, Bergeron C, Page N, Couture C, Laviolette M, Boulet LP. Influence of smoking on airway inflammation and remodelling in asthma. Clin Exp Allergy 2008;38:1582-1589. https://doi.org/10.1111/j.1365-2222.2008.03032.x
  11. Hossain FM, Choi JY, Uyangaa E, Park SO, Eo SK. The interplay between host immunity and respiratory viral infection in asthma exacerbation. Immune Netw 2019;19:e31.
  12. Riechelmann H, Deutschle T, Rozsasi A, Keck T, Polzehl D, Burner H. Nasal biomarker profiles in acute and chronic rhinosinusitis. Clin Exp Allergy 2005;35:1186-1191. https://doi.org/10.1111/j.1365-2222.2005.02316.x
  13. Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, Bachert C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006;61:1280-1289. https://doi.org/10.1111/j.1398-9995.2006.01225.x
  14. Baba S, Kondo K, Toma-Hirano M, Kanaya K, Suzukawa K, Ushio M, Suzukawa M, Ohta K, Yamasoba T. Local increase in IgE and class switch recombination to IgE in nasal polyps in chronic rhinosinusitis. Clin Exp Allergy 2014;44:701-712. https://doi.org/10.1111/cea.12287
  15. Tong P, Wesemann DR. Molecular mechanisms of IgE class switch recombination. Curr Top Microbiol Immunol 2015;388:21-37.
  16. Vercelli D, Geha RS. Regulation of isotype switching. Curr Opin Immunol 1992;4:794-797. https://doi.org/10.1016/0952-7915(92)90064-L
  17. Shim YS, Lee S, Park HW, Park SR. Sestrin2 mediates IL-4-induced IgE class switching by enhancing germline epsilon transcription in b cells. Immune Netw 2020;20:e19.
  18. Li SC, Rothman PB, Zhang J, Chan C, Hirsh D, Alt FW. Expression of I mu-C gamma hybrid germline transcripts subsequent to immunoglobulin heavy chain class switching. Int Immunol 1994;6:491-497.  https://doi.org/10.1093/intimm/6.4.491
  19. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009;119:1438-1449. https://doi.org/10.1172/JCI38019
  20. Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol 2017;12:331-357. https://doi.org/10.1146/annurev-pathol-052016-100401
  21. Hupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy 2014;69:1540-1549. https://doi.org/10.1111/all.12503
  22. Shin HW, Cho K, Kim DW, Han DH, Khalmuratova R, Kim SW, Jeon SY, Min YG, Lee CH, Rhee CS, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med 2012;185:944-954. https://doi.org/10.1164/rccm.201109-1706OC
  23. Meng J, Zhou P, Liu Y, Liu F, Yi X, Liu S, Holtappels G, Bachert C, Zhang N. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One 2013;8:e82373.
  24. Lee KI, Kim DW, Kim EH, Kim JH, Samivel R, Kwon JE, Ahn JC, Chung YJ, Mo JH. Cigarette smoke promotes eosinophilic inflammation, airway remodeling, and nasal polyps in a murine polyp model. Am J Rhinol Allergy 2014;28:208-214. https://doi.org/10.2500/ajra.2014.28.4055
  25. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, Toppila-Salmi S, Bernal-Sprekelsen M, Mullol J, Alobid I, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 2020;58:1-464. https://doi.org/10.4193/Rhin20.401
  26. Stammberger H, Posawetz W. Functional endoscopic sinus surgery. Concept, indications and results of the Messerklinger technique. Eur Arch Otorhinolaryngol 1990;247:63-76.
  27. Patel NN, Kohanski MA, Maina IW, Workman AD, Herbert DR, Cohen NA. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol 2019;9:93-99. https://doi.org/10.1002/alr.22206
  28. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010;464:1367-1370. https://doi.org/10.1038/nature08900
  29. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010;463:540-544. https://doi.org/10.1038/nature08636
  30. Van Hove CL, Moerloose K, Maes T, Joos GF, Tournoy KG. Cigarette smoke enhances Th-2 driven airway inflammation and delays inhalational tolerance. Respir Res 2008;9:42.
  31. Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol 2018;58:157-169. https://doi.org/10.1165/rcmb.2017-0200TR
  32. Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol 2020;124:333-341. https://doi.org/10.1016/j.anai.2020.01.018
  33. Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, Kast JI, Akdis CA. Defective epithelial barrier in chronic rhinosinusitis: The regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 2012;130:1087-1096.e1010. https://doi.org/10.1016/j.jaci.2012.05.052
  34. Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, Barnes N, Robinson D, Kay AB. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 2003;112:1029-1036. https://doi.org/10.1172/JCI17974
  35. Kim HJ, Jung Y. The emerging role of eosinophils as multifunctional leukocytes in health and disease. Immune Netw 2020;20:e24.
  36. Shin JM, Park JH, Kim HJ, Park IH, Lee HM. Cigarette smoke extract increases vascular endothelial growth factor production via TLR4/ROS/MAPKs/NF-kappaB pathway in nasal fibroblast. Am J Rhinol Allergy 2017;31:78-84. https://doi.org/10.2500/ajra.2017.31.4415
  37. Bequignon E, Mangin D, Becaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, et al. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020;18:136.
  38. Xia H, Xue J, Xu H, Lin M, Shi M, Sun Q, Xiao T, Dai X, Wu L, Li J, et al. Andrographolide antagonizes the cigarette smoke-induced epithelial-mesenchymal transition and pulmonary dysfunction through anti-inflammatory inhibiting HOTAIR. Toxicology 2019;422:84-94. https://doi.org/10.1016/j.tox.2019.05.009
  39. Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J 2004;24:822-833. https://doi.org/10.1183/09031936.04.00039004
  40. Cavailles A, Brinchault-Rabin G, Dixmier A, Goupil F, Gut-Gobert C, Marchand-Adam S, Meurice JC, Morel H, Person-Tacnet C, Leroyer C, et al. Comorbidities of COPD. Eur Respir Rev 2013;22:454-475. https://doi.org/10.1183/09059180.00008612
  41. Di Cello F, Flowers VL, Li H, Vecchio-Pagan B, Gordon B, Harbom K, Shin J, Beaty R, Wang W, Brayton C, et al. Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells. Mol Cancer 2013;12:90.
  42. Milara J, Peiro T, Serrano A, Cortijo J. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. Thorax 2013;68:410-420. https://doi.org/10.1136/thoraxjnl-2012-201761
  43. Sun HN, Ren CX, Gong YX, Xie DP, Kwon T. Regulatory function of peroxiredoxin I on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer development. Oncol Lett 2021;21:465.
  44. Giotopoulou GA, Stathopoulos GT. Effects of inhaled tobacco smoke on the pulmonary tumor microenvironment. Adv Exp Med Biol 2020;1225:53-69. https://doi.org/10.1007/978-3-030-35727-6_4
  45. Laidlaw TM, Buchheit KM. Biologics in chronic rhinosinusitis with nasal polyposis. Ann Allergy Asthma Immunol 2020;124:326-332. https://doi.org/10.1016/j.anai.2019.12.001
  46. Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W, Hellings P, Brusselle G, De Bacquer D, van Cauwenberge P, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 2013;131:110-116.e111. https://doi.org/10.1016/j.jaci.2012.07.047