• Title/Summary/Keyword: RNA Stability

Search Result 210, Processing Time 0.022 seconds

Enhanced pectinase and β-glucosidase enzyme production by a Bacillus subtilis strain under blue light-emitting diodes

  • Elumalai, Punniyakotti;Lim, Jeong-Muk;Oh, Byung-Teak
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.109-109
    • /
    • 2018
  • Bacillus subtilis B22, a chemotrophic and aerobic bacterial strain was isolated from homemade kimchi, identified by 16S rRNA gene sequencing. B22 was primarily screened by biochemical, carbon source utilization tests. B22 was used to produce pectinase and ${\beta}$-glucosidase by submerged fermentation under different light sources. B22 was incubated in pectin media and basal media (pH 7.0) under blue, green, red and white light-emitting diodes (LEDs), fluorescent white light, and in darkness at $37^{\circ}C$, orbital shaker 150 rpm for 24 hours. Fermentation under blue LEDs maximized pectinase production ($71.59{\pm}1.6U/mL$ at 24 h) and ${\beta}$-glucosidase production ($56.31{\pm}1.6U/mL$ at 24 h). Further, the production of enzyme increased to pectinase ($156{\pm}1.28U/mL$) and ${\beta}$-glucosidase ($172{\pm}1.28U/mL$) with 3% glucose as a carbon source. Activity and stability of the partially purified enzymes were higher at pH 6.0 to 8.0 and $25-55^{\circ}C$. The effect on the metal ions $Na^+$ and $K^+$ and (moderateactivity) $Mn^{2+}$ and $Ni^{2+}$ increased activity, while $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, and $Fe^{2+}$ inhibited activity. EDTA, phenylmethylsulfonyl fluoride and 5,5-dithiobis (2-nitrobenzoicacid) reduced activity, while tetrafluoroethylene and 1,10-phenanthroline inhibited activity. The amylase was highly tolerant of the surfactants TritonX-100, Tween-20, Tween-80 and compatible with organic solvents methanol, ethanol, isoamylalcohol, isopropanol, t-butylalcohol and the oxidizing agents hydrogen peroxide, sodium perborate and sodium hypochlorite, although potassium iodide and ammonium persulfate reduced activity. These properties suggest utility of pectinase and ${\beta}$-glucosidase produced by B. subtilis B22 under blue LED-mediated fermentation for industrial applications.

  • PDF

Identification of DC21 as a Novel Target Gene Counter-regulated by IL-12 and IL-4

  • Kong, Kyoung-Ah;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.623-628
    • /
    • 2002
  • The Th1 vs. Th2 balance is critical for the maintenance of immune homeostasis. Therefore, the genes that are selectively-regulated by the Th1 and Th2 cytokines are likely to play an important role in the Th1 and Th2 immune responses. In order to search for and identify the novel target genes that are differentially regulated by the Th1/Th2 cytokines, the human PBMC mRNAs differentially expressed upon the stimulation with IL-4 or IL-12, were screened by employing the differential display-polymerase chain reaction. Among a number of clones selected, DC21 was identified as a novel target gene that is regulated by IL-4 and IL-12. The DC21 gene expression was up-regulated either by IL-4 or IL-12, yet counter-regulated by co-treatment with IL-4 and IL-12. DC21 is a dendritic cell protein with an unknown function. The sequence analysis and conserved-domain search revealed that it has two AU-rich motifs in the 3'UTR, which is a target site for the regulation of mRNA stability by cytokines, and that it belongs to the N-acetyltransferase family. The induction of DC21 by IL-12 peaked around 8-12 h, and lasted until 24 h. LY294002 and SB203580 significantly suppressed the IL-12-induced DC21 gene expression, which implies that PI3K and p38/JNK are involved in the IL-12 signal transduction pathway that leads to the DC21 expression. Furthermore, tissue blot data indicated that DC21 is highly expressed in tissues with specialized-resident macrophages, such as the lung, liver, kidney, and placenta. Together, these data suggest a possible role for DC21 in the differentiation and maturation of dendritic cells regulated by IL-4 and IL-12.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

14-bp Insertion/Deletion Polymorphism of the HLA-G gene in Breast Cancer among Women from North Western Iran

  • Haghi, Mehdi;Feizi, Mohammad Ali Hosseinpour;Sadeghizadeh, Majid;Lotfi, Abbas Sahebghadam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6155-6158
    • /
    • 2015
  • Background: The human leukocyte antigen-G (HLA-G) gene is highly expressed in cancer pathologies and is one strategy used by tumor cells to escape immune surveillance. A 14-bp insertion/deletion (InDel) polymorphism of the HLA-G gene has been suggested to be associated with HLA-G mRNA stability and the expression of HLA-G. The aim of present study was to assess any genetic association between this polymorphism and breast cancer among Iranian-Azeri women. Materials and Methods: In this study 227 women affected with breast cancer, in addition to 255 age-sex and ethnically matched healthy individuals as the control group, participated. Genotyping was performed using polymerase chain reaction and electrophoresis assays. The data were compiled according to the genotype and allele frequencies, compared using the Chi-square test. Statistical significance was set at P<0.05. Results: In this case-control study, no significant difference was found between the case and control groups at allelic and genotype levels, although there is a slightly higher allele frequency of HLA-G 14bp deletion in breast cancer affected group. However,when the stage I subgroup was compared with stage II plus stage III subgroup of affected breast cancer, a significant difference was seen with the 14 bp deletion allele frequency. The stage II-III subgroup patients had higher frequency of deletion allele (57.4% vs 45.8%) than stage I cases (${\chi}^2=4.16$, p-value=0.041). Conclusions: Our data support a possible action of HLA-G 14bp InDel polymorphism as a potential genetic risk factor for progression of breast cancer. This finding highlights the necessity of future studies of this gene to establish the exact role of HLA-G in progression steps of breast cancer.

The Clinicopathological Significance of Bmi-1 Expression in Pathogenesis and Progression of Gastric Carcinomas

  • Lu, Hang;Sun, Hong-Zhi;Li, Hua;Cong, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3437-3441
    • /
    • 2012
  • Background: Oncogenic Bmi-1 (B-lymphoma Moloney murine leukemia virus insertion region-1) belongs to the Polycomb-group (PcG) family of proteins and plays an important role in the regulation of proliferation, senescence, cell cycle and apoptosis, chromosome stability, activation of gene transcription. Methods: To clarify the roles of Bmi-1 in tumourigenesis and progression of gastric carcinomas, it was examined by immunohistochemistry (IHC) and real-time RT-PCR in gastric carcinomas, dysplasia, intestinal metaplasia (IM), and gastritis with a comparison of its expression with clinicopathological parameters of carcinomas. Results: There was gradually increased Bmi-1 protein expression from gastritis, IM, dyplasia to carcinoma (p<0.001). Bmi-1 expression was positively linked to tumor size, depth of invasion, lymph node metastasis and worse prognosis of carcinomas (p<0.001), but not to age or sex of carcinoma patients (p>0.05). There was higher Bmi-1 protein expression in intestinal-type carcinomas than diffuse-type ones (p<0.001). At mRNA level, Bmi-1 protein expression was increased from gastritis, IM, dysplasia and carcinoma (p<0.001). Bmi-1 overexpression was observed in gastric carcinoma with larger diameter, deeper invasion, lymph node metastasis, and intestinal-type carcinoma (p<0.05). Conclusion: These findings indicate that up-regulated Bmi-1 expression is positively linked to pathogenesis, growth, invasion, metastasis and differentiation of gastric carcinomas. It was considered as a promising marker to indicate the aggressive behaviors and prognosis of gastric carcinomas.

Effect of Water Extract of Eucommiae cortex In RANKL-induced Osteoclast Differentiation (두충의 물 추출물이 파골세포의 분화에 미치는 영향)

  • Jung, Yeon-Tae;Choi, Yun-Hong;Song, Jeong-Hoon;Lee, Chang-Hoon;Lee, Myeung-Su;Jang, Sung-Jo;Cho, Hae-Joong;Kwak, Han-Bok;Oh, Jae-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.613-618
    • /
    • 2009
  • Although the effect of Eucommie umoides oliver in osteoporosis has been studied, direct action of Eucommis ulmoides Oliver on osteoclasts remains unknown. Here we examined whether Eucommiae cortex inhibits osteoclast differentiation and bone resorption, a process known to be involved in bone diseases such as osteoporosis. Water extract from Eucommiae cortex (WE-EC) inhibited differentiation of bone marrow macrophages (BMMs) into osteoclasts without causing cytotoxicity. WE-EC suppressed the phosphorylation of p38, ERK, and JNK in BMMs treated with RANKL. WE EC specifically suppressed the mRNA expression of NFATc1 induced by RANKL. However, WE-EC inhibited stability of c-Fos protein induced by RANKL. Furthermore, WE-EC inhibited osteoclast survival induced by RANKL and in turn suppressed bone resorption. Taken together, our results suggest that WE-EC may be better agents for therapeutic use in bone diseases.

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young;Cho, Seok Keun;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.

Isolation, Production, and Characterization of Protease from Bacillus subtilis IB No. 11

  • Lee, Min-Hyang;Lee, Kang-Moon;Choi, Yong-Jin;Baek, Yeon-Soo
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A potent protein degrading bacterium was isolated from soil samples of different environments. Polyphasic taxonomic studies and phylogenetic 16S rRNA sequence analyses led to identify the isolate IB No. 11 as a strain of Bacillus subtilis. The isolated strain was recognized to produce protease constitutively, and the maximum production (1.64 units/ml) was attained in a shake flask culture when the isolate was grown at $40^{\circ}C$, for 32 h in basal medium supplemented with starch (0.25%) and gelatin (1.25%) as sole carbon and nitrogen source, respectively. The optimum pH and temperature for the protease activity were determined to be pH 7.0 and $50^{\circ}C$, respectively. $Ca^{2+}$ and $Mn^{2+}$ enhanced remarkably the protease activity but neither showed positive effect on the protease's thermal stability. In addition, it was observed that the protease was fairly stable in the pH range of 6.5-8.0 and at temperatures below $50^{\circ}C$, and it could be a good candidate for an animal feed additive. The inhibition profile of the protease by various inhibitors indicated that the enzyme is a member of serine-proteases. A combination of UV irradiation and NTG mutagenesis allowed to develop a protease hyper-producing mutant strain coded as IB No. 11-4. This mutant strain produced approximately 3.23-fold higher protease activity (6.74 units/mg) than the parent strain IB No. 11 when grown at $40^{\circ}C$ for 32h in the production medium. The protease production profile of the selected mutants was also confirmed by the zymography analysis.

Heat Shock Protein 90 Regulates the Stability of c-Jun in HEK293 Cells

  • Lu, Chen;Chen, Dan;Zhang, Zhengping;Fang, Fang;Wu, Yifan;Luo, Lan;Yin, Zhimin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.210-214
    • /
    • 2007
  • The 90-kDa heat shock protein (HSP90) normally functions as a molecular chaperone participating in folding and stabilizing newly synthesized proteins, and refolding denatured proteins. The HSP90 inhibitor geldanamycin (GA) occupies the ATP/ADP binding pocket of HSP90 so inhibits its chaperone activity and causes subsequent degradation of HSP90 client proteins by proteasomes. Here we show that GA reduces the level of endogenous c-Jun in human embryonic kidney 293 (HEK293) cells in a time and dose dependent manner, and that this decrease can be reversed by transfection of HSP90 plasmids. Transfection of HSP90 plasmids in the absence of GA increases the level of endogenous c-Jun protein, but has no obvious affect on c-Jun mRNA levels. We also showed that HSP90 prolongs the half-life of c-Jun by stabilizing the protein; the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocks the degradation of c-Jun promoted by GA. Transfection of HSP90 plasmids did not obviously alter phosphorylation of c-Jun, and a Jun-2 luciferase activity assay indicated that over-expression of HSP90 elevated the total protein activity of c-Jun in HEK293 cells. All our evidence indicates that HSP90 stabilizes c-Jun protein, and so increases the total activity of c-Jun in HEK293 cells.

Effects of White Habiscus syriacus L. Flower Extracts on Antioxidant Activity and Bone Resorption Inhibition (흰 무궁화 꽃 추출물의 항산화 활성과 골 흡수의 억제 효과)

  • Lee, Hee Jung;Lee, Sang Won;Park, Chun Geun;Ahn, Young Sup;Kim, Jin Seong;Bang, Man Seok;Oh, Chung Hun;Kim, Chul Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.3
    • /
    • pp.190-197
    • /
    • 2015
  • In this study, we tried to offer the possibility of White Hibiscus syriacus L. (WHS) flower extracts as a preventive and improving agent of osteoporosis that bone mass reduction is induced by an decrease of osteoblast involved in bone formation and increase of bone resorption by osteoclast activity. As a results, it was found to have antioxidant activity and contain a flavonoid contents ($47.74 mg/g) of the WHS flower. There was cytotoxicity at more than $250{\mu}g/m{\ell}$ concentration of WHS flower extract of RANKL-induced osteoclast in RAW264.7. There were no significant inhibited TRAP activity in the WHS leaf and stem. However, it was confirmed that it is significantly inhibited the differentiation activity of osteoclasts in 50 and $100{\mu}g/m{\ell}$ concentration of cells of stability levels of only WHS flower extracts (p < 0.01). The WHS flower prominently inhibited RANKL-induced osteoclast differentiation activity by decreased calcitonin receptor and TRAP mRNA (p < 0.01). These results indicate that of osteoclasts differentiation activity is inhibited by protection of oxidative stress due to the antioxidant activity of the WHS flower. Therefore, suggesting the WHS flower may be a presents the possibility as a preventive and therapeutic agents for osteoporosis.