DOI QR코드

DOI QR Code

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young (Department of Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Cho, Seok Keun (Department of Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Woo Taek (Department of Biology, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2009.07.02
  • Accepted : 2009.08.06
  • Published : 2009.10.31

Abstract

The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.

Keywords

Acknowledgement

Supported by : National Research Foundation, Ministry of Education, Science, and Technology

References

  1. Bae, H., Choi, S.M., Yang, S.W., Pai, H.-S., and Kim, W.T. (2009). Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development. Mol. Cells 28, 57-65 https://doi.org/10.1007/s10059-009-0101-4
  2. Bergmann, D.C., and Sack, F.D. (2007). Stomatal development. Annu. Rev. Plant Biol. 58, 163-181 https://doi.org/10.1146/annurev.arplant.58.032806.104023
  3. Bergmann, D.C., Lukowitz, W., and Somerville, C.R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494-1497 https://doi.org/10.1126/science.1096014
  4. Brenner, W.G., Romanov, G.A., Kollmer, I., Bürkle, L., and Schmülling, T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44, 314-333 https://doi.org/10.1111/j.1365-313X.2005.02530.x
  5. Brukhin, V., Gheyselinck, J., Gagliardini, V., Genschik, G., and Grossniklausa, U. (2005). The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. Plant Cell 17, 2723-2737 https://doi.org/10.1105/tpc.105.034975
  6. Cho, Y-.H., Yoo, S-.D., and Sheen, J. (2006a). Regulatory functions of nuclear hexokinase1 complexin glucose signaling. Cell 127, 579-589 https://doi.org/10.1016/j.cell.2006.09.028
  7. Cho, S.K., Chung, H.S., Ryu, M.Y., Park, M.J., Lee, M.M., Bahk, Y.- Y., Kim, J., Pai, H.S., and Kim, W.T. (2006b). Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-box E3 ubiquitin ligase homolog. Plant Physiol. 142, 1664-1682 https://doi.org/10.1104/pp.106.087965
  8. Cho, S.K., Ryu, M.Y., Song, C., Kwak, J.M., and Kim, W.T. (2008). Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20, 1899-1914 https://doi.org/10.1105/tpc.108.060699
  9. Choi, J., and Hwang, I. (2007). Cytokinin: Perception, signal transduction, and role in plant growth and development. J. Plant Biol. 50, 98-108 https://doi.org/10.1007/BF03030617
  10. Dreher, K., and Callis, J. (2007). Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99, 787-822 https://doi.org/10.1093/aob/mcl255
  11. Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T., and Johnston, S.A. (2001). The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol. Cell 7, 981-991 https://doi.org/10.1016/S1097-2765(01)00250-7
  12. Ferreira, F.J., and Kieber, J.J. (2005). Cytokinin signaling. Curr. Opin. Plant Biol. 8, 518-525 https://doi.org/10.1016/j.pbi.2005.07.013
  13. Fu, H., Reis, N., Lee, Y., Glickman, M.H., and Vierstra, R.D. (2001). Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20, 7096-7107 https://doi.org/10.1093/emboj/20.24.7096
  14. Giulini, A., Wang, J., and Jackson, D. (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430, 1031-1034 https://doi.org/10.1038/nature02778
  15. Glickman, M.H., and Ciechanover, A. (2002). The ubiquitinproteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373-428 https://doi.org/10.1152/physrev.00027.2001
  16. Huang, W., Pi, L., Liang, W., Xu, B., Wang, H., Dai, R., and Huang, H. (2006). The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell 18, 2479-2492 https://doi.org/10.1105/tpc.106.045013
  17. Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383-389 https://doi.org/10.1038/35096500
  18. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., and Ishihara, N. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492 https://doi.org/10.1038/35044114
  19. Jean, R. (1994). Phyllotaxis: a systemic study in plant morphogenesis. (Cambridge Univ. Press)
  20. Jin, H., Li, S., and Villegas, A. Jr. (2006). Down-regulation of the 26S proteasome subunit RPN9 inhibits viral systemic transport and alters plant vascular development. Plant Physiol. 142, 651-661 https://doi.org/10.1104/pp.106.083519
  21. Joo, S., Seo, Y.S., Kim, S.M., Hong, D.K., Park, K.Y., and Kim, W.T. (2006). Brassinosteroid-induction of AtACS4 encoding an auxinresponsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings. Physiol. Plant. 126, 592-604
  22. Kraft, E., Stone, S.L., Ma, L., Su, N., Gao, Y., Lau, O.-S., Deng, X.- W., and Callis, J. (2005). Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol. 139, 1597-1611 https://doi.org/10.1104/pp.105.067983
  23. Kuhlemeier, C., and Reinhardt, D. (2001). Auxin and phyllotaxis. Trends Plant Sci. 6, 187-189 https://doi.org/10.1016/S1360-1385(01)01894-5
  24. Kurepa, J., Toh-E, A., and Smalle, J.A. (2008). 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J. 53, 102-114 https://doi.org/10.1111/j.1365-313X.2007.03322.x
  25. Lee, D., Ezhkova, E., Li, B., Pattenden, S.G., Tansey, W.P., and Workman, J.L. (2005). The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123, 423-436 https://doi.org/10.1016/j.cell.2005.08.015
  26. Lee, J.-H., Deng, X.W., and Kim, W.T. (2006a). Possible role of light in the maintenance of EIN3/EIL1 stability in Arabidopsis seedlings. Biochem. Biophys. Res. Commun. 350, 484-491 https://doi.org/10.1016/j.bbrc.2006.09.074
  27. Lee, B.-J., Kwon, S.J., Kim, S.-K., Kim, K.-J., Park, C.-J., Kim, Y.-J., Park, O.K., and Peak, K.-H. (2006b). Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochem. Biophys. Res. Commun. 351, 405-411 https://doi.org/10.1016/j.bbrc.2006.10.071
  28. Lee, D.J., Park, J.Y., Ku, S.J., Ha, Y.M., Kim, S., Kim, M.D., Oh, M.H., and Kim, J. (2007a) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277, 115-137 https://doi.org/10.1007/s00438-006-0177-x
  29. Lee, M.O., Hwang, J.H., Lee, D.H., and Hong, C.B. (2007b). Gene expression profile for Nicotiana tabacum in the early phase of flooding stress. J. Plant Biol. 50, 496-503 https://doi.org/10.1007/BF03030689
  30. Lee, D.J., Kim, S., Ha, Y.-M., and Kim, J. (2008). Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phosphor-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta 227, 577-587 https://doi.org/10.1007/s00425-007-0640-x
  31. Lee, H.K., Cho, S.K., Son, O., Xu, Z., Hwang, I., and Kim, W.T. (2009). Drought stress-induced Rma1H1, a RING membraneanchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21, 622-641 https://doi.org/10.1105/tpc.108.061994
  32. Leibfried, A., To, J.P.C., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172-1175 https://doi.org/10.1038/nature04270
  33. Moon, J., Parry, G., and Estelle, M. (2004). The Ubiquitin-proteasome pathway and plant development. Plant Cell 16, 3181-3195 https://doi.org/10.1105/tpc.104.161220
  34. Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205 https://doi.org/10.1126/science.1127085
  35. Oh, M., Lee, H., Kim, Y.-K., Nam, J.-W., Rhee, J.-K., Zhang, B.-T., Kim, V.N., and Lee, I. (2007). Identification and characterization of small RNAs from vernalized Arabidopsis thaliana. J. Plant Biol. 50, 562-572 https://doi.org/10.1007/BF03030710
  36. Pickart, C.M. (2001). Ubiquitin enters the new millennium. Mol. Cell 8, 499-504 https://doi.org/10.1016/S1097-2765(01)00347-1
  37. Pickart, C.M., and Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55-72 https://doi.org/10.1016/j.bbamcr.2004.09.019
  38. Rashotte, A.M., Mason, M.G., Hutchison, C.E., Ferreira, F.J., Schaller, G.E., and Kieber, J.J. (2006). A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl. Acad. Sci. USA 103, 11081-11085 https://doi.org/10.1073/pnas.0602038103
  39. Seo, Y.S., Kim, E.Y., Mang, H.G., and Kim, W.T. (2008). Heterologous expression and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J. 53, 895-908 https://doi.org/10.1111/j.1365-313X.2007.03380.x
  40. Seo, Y.S., Kim, E.Y., Kim, J.H., and Kim, W.T. (2009). Enzymatic characterization of class I DAD1-like acylhydrolase members targeted to chloroplast in Arabidopsis. FEBS Lett. 583, 2301-2307 https://doi.org/10.1016/j.febslet.2009.06.021
  41. Sheen, J. (2002). Phosphorelay and transcription control in cytokinin signal transduction. Science 296, 1650-1652 https://doi.org/10.1126/science.1071883
  42. Smalle, J., and Vierstra, R.D. (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555-590 https://doi.org/10.1146/annurev.arplant.55.031903.141801
  43. Smalle, J., Kurepa, J., Yang, P., Babiychuk, E., Kushnir, S., Durski, A., and Vierstra, R.D. (2002). Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell 14, 17-32 https://doi.org/10.1105/tpc.010381
  44. Smalle, J., Kurepa, J., Yang, P., Emborg, T.J., Babiychuk, E., Kushnir, S., Vierstra, R.D. (2003). The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 15, 965-980 https://doi.org/10.1105/tpc.009217
  45. Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137, 13-30 https://doi.org/10.1104/pp.104.052423
  46. To, J.P.C., and Kieber, J.J. (2008). Cytokinin signaling: twocomponents and more. Trends Plant Sci. 13, 85-92 https://doi.org/10.1016/j.tplants.2007.11.005
  47. To, J.P.C., Deruère, J., Maxwell, B.B., Morris, V.F., Hutchison, C.E., Ferreira, F.J, Schaller, G.E., and Kieber, J.J. (2007). Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay. Plant Cell 19, 3901-3914 https://doi.org/10.1105/tpc.107.052662
  48. Tran, L.-S.P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 20623-20628 https://doi.org/10.1073/pnas.0706547105
  49. Urao, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Plant histidine kinases: An emerging picture of two-component signal transduction in hormone and environmental responses. Sci. STKE. 2001, re18
  50. Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135-142 https://doi.org/10.1016/S1360-1385(03)00014-1
  51. Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015-1068 https://doi.org/10.1146/annurev.biochem.68.1.1015
  52. Wohlbach, D.J., Quirino, B.F., and Sussman, M.R. (2008). Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20, 1101-1117 https://doi.org/10.1105/tpc.107.055871
  53. Wojcik, C. (2001). Ubiquitin-more than just a signal for protein degradation. Trends Cell Biol. 11, 397-399 https://doi.org/10.1016/S0962-8924(01)02084-0
  54. Yee, D., and Goring, D.R. (2009). The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J. Exp. Bot. 60, 1109-1121 https://doi.org/10.1093/jxb/ern369

Cited by

  1. The Arabidopsis sn -1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability vol.62, pp.15, 2009, https://doi.org/10.1093/jxb/err250
  2. The Arabidopsis RING E3 Ubiquitin Ligase AtAIRP2 Plays Combinatory Roles with AtAIRP1 in Abscisic Acid-Mediated Drought Stress Responses vol.157, pp.4, 2009, https://doi.org/10.1104/pp.111.185595
  3. Proteome Analysis in Arabidopsis Reveals Shoot- and Root-Specific Targets of Cytokinin Action and Differential Regulation of Hormonal Homeostasis vol.161, pp.2, 2013, https://doi.org/10.1104/pp.112.202853
  4. Proteasome-dependent proteolysis has a critical role in fine-tuning the feedback inhibition of cytokinin signaling vol.8, pp.3, 2009, https://doi.org/10.4161/psb.23474
  5. Sulfenome mining in Arabidopsis thaliana vol.111, pp.31, 2009, https://doi.org/10.1073/pnas.1411607111
  6. A Proteomic Approach Suggests Unbalanced Proteasome Functioning Induced by the Growth-Promoting Bacterium Kosakonia radicincitans in Arabidopsis vol.8, pp.None, 2009, https://doi.org/10.3389/fpls.2017.00661
  7. EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity vol.117, pp.43, 2009, https://doi.org/10.1073/pnas.2013161117
  8. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? vol.16, pp.1, 2009, https://doi.org/10.1080/15592324.2020.1831792
  9. Morphological, Physiological, and Molecular Responses of Sweetly Fragrant Luculia gratissima During the Floral Transition Stage Induced by Short-Day Photoperiod vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.715683
  10. Molecular Analysis Associated with Early Flowering Mutant in Brassica napus vol.64, pp.3, 2009, https://doi.org/10.1007/s12374-021-09299-1