• Title/Summary/Keyword: RNA Sequencing

Search Result 1,225, Processing Time 0.031 seconds

FusionScan: accurate prediction of fusion genes from RNA-Seq data

  • Kim, Pora;Jang, Ye Eun;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.26.1-26.12
    • /
    • 2019
  • Identification of fusion gene is of prominent importance in cancer research field because of their potential as carcinogenic drivers. RNA sequencing (RNA-Seq) data have been the most useful source for identification of fusion transcripts. Although a number of algorithms have been developed thus far, most programs produce too many false-positives, thus making experimental confirmation almost impossible. We still lack a reliable program that achieves high precision with reasonable recall rate. Here, we present FusionScan, a highly optimized tool for predicting fusion transcripts from RNA-Seq data. We specifically search for split reads composed of intact exons at the fusion boundaries. Using 269 known fusion cases as the reference, we have implemented various mapping and filtering strategies to remove false-positives without discarding genuine fusions. In the performance test using three cell line datasets with validated fusion cases (NCI-H660, K562, and MCF-7), FusionScan outperformed other existing programs by a considerable margin, achieving the precision and recall rates of 60% and 79%, respectively. Simulation test also demonstrated that FusionScan recovered most of true positives without producing an overwhelming number of false-positives regardless of sequencing depth and read length. The computation time was comparable to other leading tools. We also provide several curative means to help users investigate the details of fusion candidates easily. We believe that FusionScan would be a reliable, efficient and convenient program for detecting fusion transcripts that meet the requirements in the clinical and experimental community. FusionScan is freely available at http://fusionscan.ewha.ac.kr/.

Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction

  • Jeewan Chun;Ji-Hoi Moon;Kyu Hwan Kwack;Eun-Young Jang;Saebyeol Lee;Hak Kyun Kim;Jae-Hyung Lee
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.232-237
    • /
    • 2024
  • This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation.

Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People

  • Dezhou Zhu;Jie Gao;Chengxuan Tang;Zheng Xu;Tiansheng Sun
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2022
  • Background and Objectives: Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown. Methods and Results: In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis. Conclusions: This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demonstrating the heterogeneity of BMSCs.

Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology

  • Teves, Joji Marie;Won, Kyoung Jae
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.591-599
    • /
    • 2020
  • Complex cell-to-cell communication underlies the basic processes essential for homeostasis in the given tissue architecture. Obtaining quantitative gene-expression of cells in their native context has significantly advanced through single-cell RNA sequencing technologies along with mechanical and enzymatic tissue manipulation. This approach, however, is largely reliant on the physical dissociation of individual cells from the tissue, thus, resulting in a library with unaccounted positional information. To overcome this, positional information can be obtained by integrating imaging and positional barcoding. Collectively, spatial transcriptomics strategies provide tissue architecture-dependent as well as position-dependent cellular functions. This review discusses the current technologies for spatial transcriptomics ranging from the methods combining mechanical dissociation and single-cell RNA sequencing to computational spatial re-mapping.

RNA-sequencing Profiles of Cell Cycle-Related Genes Upregulated during the G2-Phase in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.185-189
    • /
    • 2019
  • To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

miRNA Pattern Discovery from Sequence Alignment

  • Sun, Xiaohan;Zhang, Junying
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1527-1543
    • /
    • 2017
  • MiRNA is a biological short sequence, which plays a crucial role in almost all important biological process. MiRNA patterns are common sequence segments of multiple mature miRNA sequences, and they are of significance in identifying miRNAs due to the functional implication in miRNA patterns. In the proposed approach, the primary miRNA patterns are produced from sequence alignment, and they are then cut into short segment miRNA patterns. From the segment miRNA patterns, the candidate miRNA patterns are selected based on estimated probability, and from which, the potential miRNA patterns are further selected according to the classification performance between authentic and artificial miRNA sequences. Three parameters are suggested that bi-nucleotides are employed to compute the estimated probability of segment miRNA patterns, and top 1% segment miRNA patterns of length four in the order of estimated probabilities are selected as potential miRNA patterns.

Application of Pyrolysis Mass Spectrometry on Yeast Screening (효모 탐색을 위한 Pyrolysis Mass Spectrometry의 활용)

  • 신기선;신용국;권오유;이상한
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.19-23
    • /
    • 2001
  • To develop the effective microbial screening method, pyrolysis mass spectrometry (PyMS) fingerprinting was evaluated as a tool that discriminate various yeast strains. The target yeast strains were isolated from industrial wastewater. Seventeen environmental isolated yeast strains were examined by pyrolysis mass spectrometry and sequencing analysis of the large subunit rRNA gene D1/D2 region. The PyMS results were compared with those of sequencing analysis. Taxonomic correlations were observed between the PyMS data and the sequencing results. It was concluded that PyMS provides a rapid, reliable and cost-reducing method for discrimination of the yeast strains.

  • PDF

Trimming conditions for DADA2 analysis in QIIME2 platform

  • Lee, Seo-Young;Yu, Yeuni;Chung, Jin;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.146-153
    • /
    • 2021
  • Accurate identification of microbes facilitates the prediction, prevention, and treatment of human diseases. To increase the accuracy of microbiome data analysis, a long region of the 16S rRNA is commonly sequenced via paired-end sequencing. In paired-end sequencing, a sufficient length of overlapping region is required for effective joining of the reads, and high-quality sequencing reads are needed at the overlapping region. Trimming sequences at the reads distal to a point where sequencing quality drops below a specific threshold enhance the joining process. In this study, we examined the effect of trimming conditions on the number of reads that remained after quality control and chimera removal in the Illumina paired-end reads of the V3-V4 hypervariable region. We also examined the alpha diversity and taxa assigned by each trimming condition. Optimum quality trimming increased the number of good reads and assigned more number of operational taxonomy units. The pre-analysis trimming step has a great influence on further microbiome analysis, and optimized trimming conditions should be applied for Divisive Amplicon Denoising Algorithm 2 analysis in QIIME2 platform.

A Versatile Method for DNA Sequencing of Unpurified PCR Products using an Automated DNA Sequencer and Tailed or Nested Primer Labeled with Near-infrared Dye: A Case Study on the Harmful Dinoflagellate Alexandrium

  • Ki Jang-Seu;Han Myung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.70-74
    • /
    • 2006
  • DNA sequence-based typing is considered a robust tool for the discrimination of dinoflagellate species because of the availability of extensive rDNA sequences. Here, we present a rapid, cost-effective DNA-sequencing technique for various PCR products. This sequencing strategy relies on 'nested' or 'tailed' primer labeled with near-infrared dye, and uses a minimal volume of unpurified PCR product (ca. $5{\mu}L$) as the DNA template for sequencing reactions. Reliable and accurate base identification was obtained for several hundred PCR fragments of rRNA genes. This quick, inexpensive technique is widely applicable to sequence-based typing in clinical applications, as well as to large-scale DNA sequencing of the same genomic regions from related species for studies of molecular evolution.