• 제목/요약/키워드: RNA Interference

검색결과 240건 처리시간 0.037초

Impact of Co-transfection with Livin and Survivin shRNA Expression Vectors on Biological Behavior of HepG2 Cells

  • Xu, Wei;Chang, Hong;Qin, Cheng-Kun;Zhai, Yun-Peng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5467-5472
    • /
    • 2013
  • Objective: To construct short hairpin RNA (shRNA) eukaryotic expression vectors targeting Livin and Survivin genes, and to explore the impact of co-transfection of Livin and Survivin shRNA expression vectors on the biological behavior of HepG2 cells. Methods: shRNA eukaryotic expression vectors pSD11-Livin and pSD11-Survivin were designed and constructed then transfected into HepG2 cells separately or in combination. mRNA and protein expression in transfected cells was assessed by quantitative fluorescence PCR and Western blotting, respectively. Cell proliferation was measured by MTT assay and cell apoptosis by TUNEL assay. Results: The Livin and Survivin shRNA eukaryotic expression vectors were successfully constructed and transfected into HepG2 cells. The relative mRNA expression levels of Livin and Survivin in HepG2 cells co-transfected with pSD11-Livin and pSD11-Survivin were $0.12{\pm}0.02$ and $0.33{\pm}0.13$, respectively, which was significantly lower than levels in cells transfected with either pSD11-Livin or pSD11-Survivin (P<0.05). The relative protein expression levels of Livin and Survivin in the co-transfected cells were also significantly decreased compared to single-transfection (P<0.05). The inhibition rate of cell growth in the co-transfection group was higher than that in the single-transfection groups at 48 h, 60 h, or 72 h after transfection (P<0.01). The apoptotic rate increased to the greatest extent in the co-transfection group relative to any other group (P<0.05). Conclusions: Co-transfection with pSD11-Livin and pSD11-Survivin was more efficient than transfection with either vector alone in reducing the mRNA and protein expression of Livin and Survivin genes in HepG2 cells. Co-transfection also inhibited the proliferation of transfected cells more than the other groups, and induced cellular apoptosis more effectively.

Knockdown of Med19 Suppresses Proliferation and Enhances Chemo-sensitivity to Cisplatin in Non-small Cell Lung Cancer Cells

  • Wei, Ling;Wang, Xing-Wu;Sun, Ju-Jie;Lv, Li-Yan;Xie, Li;Song, Xian-Rang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.875-880
    • /
    • 2015
  • Mediator 19 (Med19) is a component of the mediator complex which is a coactivator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The involvement of Med19 in sensitivity to the chemotherapeutic agent cisplatin was here investigated. We employed RNA interference to reduce Med19 expression in human non-small cell lung cancer (NSCLC) cell lines and analyzed their phenotypic changes. The results showed that after Med19 siRNA transfection, expression of Med19 mRNA and protein was dramatically reduced (p<0.05). Meanwhile, impaired growth potential, arrested cell cycle at G0/G1 phase and enhanced sensitivity to cisplatin were exhibited. Apoptosis and caspase-3 activity were increased when cells were exposed to Med19 siRNA and/or cisplatin. The present findings suggest that Med19 facilitates tumorigenic properties of NSCLC cells and knockdown of Med19 may be a rational therapeutic tool for lung cancer cisplatin sensitization.

New Hairpin RNAi Vector with Brassica rapa ssp. pekinensis Intron for Gene Silencing in Plants

  • Lee, Gi-Ho;Lee, Gang-Seob;Park, Young-Doo
    • 원예과학기술지
    • /
    • 제35권3호
    • /
    • pp.323-332
    • /
    • 2017
  • Homology-specific transcriptional and post-transcriptional silencing, an intrinsic mechanism of gene regulation in most eukaryotes, can be induced by anti-sense, co-suppression, or hairpin-based double-stranded RNA. Hairpin-based RNA interference (RNAi) has been applied to analyze gene function and genetically modify crops. However, RNAi vector construction usually requires high-cost cloning steps and large amounts of time, or involves methods that are protected by intellectual property rights. We describe a more effective method for generating intron-spliced RNAi constructs. To produce intron-spliced hairpin RNA, an RNAi cassette was ligated with the first intron and splicing sequences of the Brassica rapa ssp. pekinensis histone deacetylase 1 gene. This method requires a single ligation of the PCR-amplified target gene to SpeI-NcoI and SacI-BglII enzyme sites to create a gene-specific silencing construct. We named the resulting binary vector system pKHi and verified its functionality by constructing a vector to silence DIHYDROFLAVONOL 4-REDUCTASE (DFR), transforming it into tobacco plants, and confirming DFR gene-silencing via PCR, RT-qPCR, and analysis of the accumulation of small interfering RNAs. Reduction of anthocyanin biosynthesis was also confirmed by analyzing flower color of the transgenic tobacco plants. This study demonstrates that small interfering RNAs generated through the pKHi vector system can efficiently silence target genes and could be used in developing genetically modified crops.

Study of the planarian phototaxis during brain regeneration

  • Inoue, Takeshi;Kumamoto, Hiroshi;Cebria, Frances;Kobayashi, Chiyoko;Agata, Kiyokazu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.287-289
    • /
    • 2002
  • Planarians show negative phototaxis and have extensive regenerative ability, including the ability to regenerate the brain. Recently the process of regeneration of the planarian brain has been divided into three steps based on the expression of neural markers. In this study, we have analyzed the process of recovery of the light response during head regeneration. Although morphological observations indicated that regeneration of the eyes and optic nerves appeared to be completed by the fourth day, the recovery of the evasion behavior against light was not recovered within 4 days after amputation. Functional recovery of the evasion behavior could be detected starting 5 days after amputation and then gradually recovered. We previously identified genes which are specifically expressed in the brain after the recovery of morphological structures. This characteristic suggested that these genes may be involved in functional recovery of the brain. To investigate the function of these genes, we performed gene knockout analysis using the RNA interference method. The results clearly indicated that these genes are involved in the functional recovery of the visual system.

  • PDF

RNA 형광 검출을 위한 Finger형 PIN 광다이오드의 제작 및 평가 (Development and Characterization of Finger-type PIN Photodiode for Fluorescence Detection of RNA)

  • 김주환;오명환;주병권
    • 센서학회지
    • /
    • 제13권2호
    • /
    • pp.85-89
    • /
    • 2004
  • This paper represents the development of high sensitivity photo-sensor for the fluorescence detection in the integrated biological analysis system. The finger-type PIN photodiodes were fabricated as the photo-sensor, and had a high sensitivity ($I_{light}/I_{dark}$ = 8720). The interference filter consisted of $TiO_{2}$ and $SiO_{2}$ was directly deposited on the photodiodes. Deposited filter with 95.5% reflection under 532 nm and 98% transmission over 580 nm exceedingly decreased the magnitude of background signal in the detection. The PDMS micro-fluidic channels are bonded on the photodiode by $O_{2}$ plasma treatment. The detection current was proportional to two primary parameters (light intensity, concentration), and the on-chip detection system could detect fluorescence signals down to 100 nM concentration (LOD = Limit of detection of rhodamine).

Candida albicans의 마이크로RNA 동정과 분석 (Identification and analysis of microRNAs in Candida albicans)

  • 조진현;이헌진
    • 생명과학회지
    • /
    • 제27권12호
    • /
    • pp.1494-1499
    • /
    • 2017
  • Candida albicans에 의한 구강 감염(캔디다증)은 구강 점막에 빈번하게 발생하며 잘 알려진 질병이다. 구강 캔디다증은 생명을 위협하는 정도의 곰팡이 감염증은 아니나, 특정상황에서 개인에게 심각한 위험을 초래할 수도 있다. 마이크로 RNA는 세포 내에서 다른 타겟 유전자를 저해하는 작은 크기의 RNA 분자이며 단백질을 코딩하지는 않고 번역과정을 억제하는 조절자로서의 역할을 하고 있다. 본 연구는 C. albicans의 마이크로RNA를 처음으로 동정하고 그러한 마이크로RNA가 지닌 기능을 조사하기 위함이다. 이를 위하여 C. albicans의 small RNA를 차세대 염기분석법을 통하여 분석하고 그러한 RNA들의 2차 구조를 생물정보학적 방법으로 조사하였다. 분석한 small RNA들은 마이크로 RNA라고 불리울 수 있는 특징들을 가지고 있었으며, 특별히 높게 발현되고 있는 두개의 마이크로 RNA 정도 크기의 RNA가 CBP1 유전자의 3' 말단 비번역구역(UTR)에서 반대방향으로 발현하는 것을 밝혀 내었다. 우리는 이러한 C. albicans의 RNA가 CBP1 유전자를 타겟으로 하여 조절하는지 알아보기 위해 RNA를 인위적으로 합성한 후 세포 내로 주입하고, 형광형미경으로 도입 사실을 확인하였다. 하지만 4시간과 8시간 후에 CBP1의 발현 변화는 관찰되지 않았다. 따라서, 이러한 결과는 C. albicans가 마이크로RNA에 의한 RNA 간섭(RNAi) 작용이 다른 진핵세포와는 다르게 작용하는 것을 알 수 있다.

RNA Interference 및 T-DNA Integration 방법에 의한 배추 기능유전자 Silencing 효과 비교 (Comparison of RNA Interference-mediated Gene Silencing and T-DNA Integration Techniques for Gene Function Analysis in Chinese Cabbage)

  • 유재경;이기호;박영두
    • 원예과학기술지
    • /
    • 제30권6호
    • /
    • pp.734-742
    • /
    • 2012
  • 본 연구는 배추의 유전자 기능분석을 위한 RNAi 유전자 침묵 기법과 T-DNA 삽입 기법을 비교하기 위해 수행하였다. 두 종류의 형질전환 계통이 이용되었으며 BrSAMS-knockout(KO) 계통은 T-DNA 삽입으로 한 개의 Brassica rapa S-adenosylmethionine synthetase(BrSAMS) 유전자가 기능을 상실한 계통이었으며 BrSAMS-knockdown(KD) 계통은 RNAi 방법을 통해 BrSAMS 유전자들의 발현이 억제된 계통이었다. KO 계통과 KD 계통의 microarray 분석 결과에서는 SAMS 유전자와 관련된 sterol, 자당, homogalacturonan 생합성 및 glutaredoxin-related protein, serine/threonine protein kinase, 그리고 gibberellin-responsive protein 유전자들의 발현 수준이 뚜렷한 차이를 보여 주었다. 그러나 KO 계통의 유전자 발현 양상은 하나의 BrSAMS 유전자가 기능을 상실하였음에도 불구하고 대조 계통과 비교하여 RNAi기법을 적용한 KD 계통에 비해 큰 차이를 보여주지 못했다. 또한 직접적으로 SAMS 유전자와 관련된 폴리아민과 에틸렌 합성 유전자들의 발현 변화도 KD 계통에서 더 잘 나타났다. 본 연구에서 microarray 결과를 이용한 KO 계통의 BrSAMS 기능분석은 배추과식물의 게놈 triplication 발생으로 인하여 다수로 존재하는 SAMS 유전자들 때문에 명확한 결론을 얻을 수 없었다. 결론적으로 배추와 같은 배수체 작물의 유전자 기능 분석은 RNAi silencing에 의한 유전자 knock-down 기법이 T-DNA 삽입에 의한 knock-out 기법보다 더욱 효율적인 것으로 나타났다.

Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells

  • Wang, Yun-Liang;Dong, Feng-Lin;Yang, Jian;Li, Zhi;Zhi, Qiao-Ming;Zhao, Xin;Yang, Yong;Li, De-Chun;Shen, Xiao-Chun;Zhou, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.4065-4069
    • /
    • 2015
  • Background: Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. Materials and Methods: EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NCPANC-1, and si-PANC-1 cells, respectively. Results: After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Conclusions: Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.