• Title/Summary/Keyword: RNA I

Search Result 1,880, Processing Time 0.03 seconds

The complete mitochondrial genome sequence of the indigenous I pig (Sus scrofa) in Vietnam

  • Nguyen, Hieu Duc;Bui, Tuan Anh;Nguyen, Phuong Thanh;Kim, Oanh Thi Phuong;Vo, Thuy Thi Bich
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.930-937
    • /
    • 2017
  • Objective: The I pig is a long nurtured longstanding breed in Vietnam, and contains excellent indigenous genetic resources. However, after 1970s, I pig breeds have become a small population because of decreasing farming areas and increasing pressure from foreign breeds with a high growth rate. Thus, there is now the risk of the disappearance of the I pigs breed. The aim of this study was to focus on classifying and identifying the I pig genetic origin and supplying molecular makers for conservation activities. Methods: This study sequenced the complete mitochondrial genome and used the sequencing result to analyze the phylogenetic relationship of I pig with Asian and European domestic pigs and wild boars. The full sequence was annotated and predicted the secondary tRNA. Results: The total length of I pig mitochondrial genome (accession number KX094894) was 16,731 base pairs, comprised two rRNA (12S and 16S), 22 tRNA and 13 mRNA genes. The annotation structures were not different from other pig breeds. Some component indexes as AT content, GC, and AT skew were counted, in which AT content (60.09%) was smaller than other pigs. We built the phylogenetic trees from full sequence and D loop sequence using Bayesian method. The result showed that I pig, Banna mini, wild boar (WB) Vietnam and WB Hainan or WB Korea, WB Japan were a cluster. They were a group within the Asian clade distinct from Chinese pigs and other Asian breeds in both phylogenetic trees (0.0004 and 0.0057, respectively). Conclusion: These results were similar to previous phylogenic study in Vietnamese pig and showed the genetic distinctness of I pig with other Asian domestic pigs.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

Insulin-like Growth Factor-I Induces FABPpm Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I 이 FABPpm과 FAT/CD36 발현에 미치는 영향)

  • Kim, Hye Jin;Yoon, Hae Min;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1098-1102
    • /
    • 2015
  • FABPpm (plasma membrane-bound fatty acid binding protein ) is highly expressed in skeletal muscle. The principal role of this protein is modulating fatty acid uptake and metabolism. The influence of insulin-like growth factor-I (IGF-I), which is a major regulator of skeletal muscle cells, on FABPpm in skeletal muscle cells has not been investigated. To determine the effect of IGF-I on the expression of FABPpm, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I for different times. IGF-I increased the expression of FABPpm in a time-dependent manner. The mRNA level of FABPpm was measured by real-time quantitative PCR to determine whether the IGF-1-induced induction of FABPpm was regulated pretranslationally. The IGF-I treatment resulted in very rapid induction of the FABPpm mRNA transcript in the C2C12 myotubes. After 24 and 48 hr of the IGF-I treatment, FABPpm mRNA increased 130 and 179%, respectively. The increase in the protein expression returned to control levels after 72 hr of the IGF-I treatment, suggesting that IGF-1 regulated the FABPpm gene pretranslationally in skeletal muscle cells. This is the first evidence that IGF-I has a modulatory effect on the expression of FABPpm. In conclusion, IGF-I induced rapid transcriptional modification of the FABPpm gene in C2C12 skeletal muscle cells and exerted modulatory effects on FABPpm.

Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences

  • Choi, Gang-Guk;Ahn, Chi-Yong;Oh, Hee-Mock
    • ALGAE
    • /
    • v.27 no.2
    • /
    • pp.75-82
    • /
    • 2012
  • $Arthrospira$ $platensis$ and $Arthrospira$ $maxima$ are species of cyanobacteria used in health foods, animal feed, food additives, and fine chemicals. This study conducted a comparison of the 16S rRNA gene and $cpcBA$-intergenic spacer ($cpcBA$-IGS) sequences in $Arthrospira$ strains from culture collections around the world. A cluster analysis divided the 10 $Arthrospira$ strains into two main genotypic clusters, designated I and II, where Group I contained $A.$ $platensis$ SAG 86.79, UTEX 2340, $A.$ $maxima$ KCTC AG30054, and SAG 49.88, while Group II contained $A.$ $platensis$ PCC 9108, NIES 39, NIES 46, and SAG 257.80. However, although $A.$ $platensis$ PCC 9223 belonged to Group II-2 based on its $cpcBA$-IGS sequence, this strain also belonged to Group I based on its 16S rRNA gene sequence. Phylogenetic analyses based on the 16S rRNA gene and $cpcBA$-IGS sequences showed no division between $A.$ $platensis$ and $A.$ $maxima$, plus the 16S rRNA gene and $cpcBA$-IGS sequence clusters did not indicate any well-defined geographical distribution, instead overlapping in a rather interesting way. Therefore, the current study supports some previous conclusions based on 16S rRNA gene and $cpcBA$-IGS sequences, which found that $Arthrospira$ taxa are monophyletic. However, when compared with 16S rRNA sequences, $cpcBA$-IGS sequences may be better suited to resolve close relationships and intraspecies variability.

Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee;Song, Min-Sun;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1070-1076
    • /
    • 2009
  • Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

New Hairpin RNAi Vector with Brassica rapa ssp. pekinensis Intron for Gene Silencing in Plants

  • Lee, Gi-Ho;Lee, Gang-Seob;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.323-332
    • /
    • 2017
  • Homology-specific transcriptional and post-transcriptional silencing, an intrinsic mechanism of gene regulation in most eukaryotes, can be induced by anti-sense, co-suppression, or hairpin-based double-stranded RNA. Hairpin-based RNA interference (RNAi) has been applied to analyze gene function and genetically modify crops. However, RNAi vector construction usually requires high-cost cloning steps and large amounts of time, or involves methods that are protected by intellectual property rights. We describe a more effective method for generating intron-spliced RNAi constructs. To produce intron-spliced hairpin RNA, an RNAi cassette was ligated with the first intron and splicing sequences of the Brassica rapa ssp. pekinensis histone deacetylase 1 gene. This method requires a single ligation of the PCR-amplified target gene to SpeI-NcoI and SacI-BglII enzyme sites to create a gene-specific silencing construct. We named the resulting binary vector system pKHi and verified its functionality by constructing a vector to silence DIHYDROFLAVONOL 4-REDUCTASE (DFR), transforming it into tobacco plants, and confirming DFR gene-silencing via PCR, RT-qPCR, and analysis of the accumulation of small interfering RNAs. Reduction of anthocyanin biosynthesis was also confirmed by analyzing flower color of the transgenic tobacco plants. This study demonstrates that small interfering RNAs generated through the pKHi vector system can efficiently silence target genes and could be used in developing genetically modified crops.

STUDY CYTOCHROME P450IA1 GENE EXPRESSION BY RTPCR.

  • Lee, Soo-Young;Yhun Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.128-128
    • /
    • 1995
  • To investigate the mechanism of the regulation of cytochrome P450IA1 gene expression, ethoxyresorufin deethylase(EROD) and benzo(a)pyrene hydroxylase in B6 mouse liver, in isolated perfused rat liver system. and in B6 mouse hepatocyte Hepa-I cells were examined. In C57BL/6N mouse, 3-methylcholan- throne( 3MC ) treatment have resulted in the stimulation of EROD activity based on fluorometry by 2.79 fold comparirng with that of control. Measurement of mRNA of cytochrome P450 was carried out by either nothern blot or dot blot analysis. Findings are similar to that of studies with enzymes. Furhtermore, when RTPCR method was applied to detect mRNA in Hepa I cell and liver tissues the results were more clear. Cytochrome P450IA1 upstream DNA containing CAT construct was transfected into Hepa-1 cells. After transfection of CAT construct, 3MC and flavonoids, such as, chrysin, hesperetin, kaempferol, morin, myricetin and aminoyrine were treated. 48 Hours after treatments, cells were harvested and assayed for CAT mRNA by RTPCR. 3MC treatment to hepa I cells transfected with trout P450IA1-CAT construct increased CAT mRNA by 2.81 fold when it was compared with that of control. This increase CAT mRNA was decreased by concomitantly treated flavonoids and aminopyrine. The level of CAT protein was 29.2-58.0% of 3MC stimulated CAT protein. Results of this study suggested that RTPCR seems to be a very good method to study regulation of gene expression in liver tissue or Hepa cells.

  • PDF

Identification and Differentiation of Cucumber Mosaic Virus Isolated from Forsythia koreana (CMV-Fk) Using PCR Techniques (PCR기법을 이용한 오이 모자이크 바이러스 개나리 분리주(CMV-Fk)의 동정과 구분)

  • 이상용;박선정;최장경
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 1998
  • Reverse transcription and polymerase chain reaction (RT-PCR) techiniques were used to identification and differentiation of cucumber mosaic virus isolated from Forsythia koreana (CMV-Fk). RT-PCT used by two set of 20-mer primers one was CMV-common primers and another was CMV subgroup I-specific primers designed in a conserved region of the 3' end of CMV RNA3, amplified about 490 bp and 200 bp DNA fragments from CMV-Fk, respectively. CMV could be detected by RT-PCR at a dilution as low as 10-4 in forsythia crude sap extracts. Restriction enzyme analysis of RT-PCR products using EcoRI and MspI showed that CMV-Fk belonged to CMV subgroup I. But, analysis of RNA fingerprinting by arbitrarily primed polymerase chain reaction (RAP-PCR) showed heterogeneity of RNA3 between CMV-Fk and CMV-Y as a member of subgroup I.

  • PDF

Changes of Hypothalamic GnRH-I, POMC and NPY mRNA Expression and Serum IGF-I and Leptin Concentrations during Maturation of Shaoxing Ducks (Anas platyrhynchos)

  • Ni, Y.;Lu, L.;Chen, J.;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1211-1216
    • /
    • 2011
  • Sexual maturity in poultry is controlled by a complex neural circuit located in the basal forebrain, which integrates the central and peripheral signals to activate hypothalamic gonadotrophin-releasing hormone (GnRH) secretion. This study demonstrated the changes of GnRH-I, POMC and NPY mRNA transcription in hypothalamus and IGF-I and leptin levels in serum of Shaoxing ducks during puberty. Body weight increased progressively from d30 to d120 and at d120 the flock reached 5% of laying rate. A significant upregulation of hypothalamic GnRH-I mRNA expression was observed from d60, reaching the peak at d120. POMC and NPY mRNA expression in hypothalamus showed a similar pattern, which increased from d30 to d60, followed by a significant decrease towards sexual maturity. Serum IGF-I levels exhibited two peaks at d30 and d120, respectively. Serum leptin displayed a single peak at d90. The results indicate that the down-regulation of POMC and NPY genes in hypothalamus coincides with the up-regulation of GnRH-I gene to initiate sexual maturation in ducks. In addition, peripheral IGF-I and leptin may relay the peripheral metabolic status to the central system and contribute to the initiation of the reproductive function in ducks.

Anti-inflammatory Effect of Ishige foliacea in RAW 264.7 Cells (넓패추출물에 의한 RAW 264.7 세포에서의 항염효과)

  • Joonghyun Shim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • This study was carried out to identify the anti-inflammatory effects of Ishige foliacea (I. foliacea) extract on skin using RAW 264.7 cells. The anti-inflammatory effects of I. foliacea extract on RAW 264.7 cells were assessed by cell viability assay, mRNA expressions, and nitric oxide (NO)/prostaglandin E2 (PGE2) productions. The anti-inflammatory effects of I. foliacea extract were elucidated by analysis of IL-1α/IL-1β/IL-6/TNFα gene expressions and PGE2/NO production. Quantitative real-time polymerase chain reaction showed that I. foliacea extract decreased the gene expression levels of iNOS/COX2/IL-1α/IL-1β and IL-6. Furthermore, PGE2/NO production also revealed that I. foliacea extract exhibited anti-inflammatory properties. These results suggest that I. foliacea extract is an anti-inflammatory compound. It could be a potent cosmeceutical material for anti-inflammatory effects. Further studies on the anti-inflammatory mechanisms of broadleaf extracts are expected to help identify pharmacological mechanisms related to inflammation in addition to cosmeceuticals.