Browse > Article
http://dx.doi.org/10.4490/algae.2012.27.2.075

Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences  

Choi, Gang-Guk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
ALGAE / v.27, no.2, 2012 , pp. 75-82 More about this Journal
Abstract
$Arthrospira$ $platensis$ and $Arthrospira$ $maxima$ are species of cyanobacteria used in health foods, animal feed, food additives, and fine chemicals. This study conducted a comparison of the 16S rRNA gene and $cpcBA$-intergenic spacer ($cpcBA$-IGS) sequences in $Arthrospira$ strains from culture collections around the world. A cluster analysis divided the 10 $Arthrospira$ strains into two main genotypic clusters, designated I and II, where Group I contained $A.$ $platensis$ SAG 86.79, UTEX 2340, $A.$ $maxima$ KCTC AG30054, and SAG 49.88, while Group II contained $A.$ $platensis$ PCC 9108, NIES 39, NIES 46, and SAG 257.80. However, although $A.$ $platensis$ PCC 9223 belonged to Group II-2 based on its $cpcBA$-IGS sequence, this strain also belonged to Group I based on its 16S rRNA gene sequence. Phylogenetic analyses based on the 16S rRNA gene and $cpcBA$-IGS sequences showed no division between $A.$ $platensis$ and $A.$ $maxima$, plus the 16S rRNA gene and $cpcBA$-IGS sequence clusters did not indicate any well-defined geographical distribution, instead overlapping in a rather interesting way. Therefore, the current study supports some previous conclusions based on 16S rRNA gene and $cpcBA$-IGS sequences, which found that $Arthrospira$ taxa are monophyletic. However, when compared with 16S rRNA sequences, $cpcBA$-IGS sequences may be better suited to resolve close relationships and intraspecies variability.
Keywords
Arthrospira (Spirulina); cpcBA-IGS; phylogenetic analysis; 16S rRNA gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tomaselli, L. 1997. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 1-15.
2 Turner, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46:327-338.   DOI
3 Viti, C., Ventura, S., Lotti, F., Capolino, E., Tomaselli, L. & Giovannetti, L. 1997. Genotypic diversity and typing of cyanobacterial strains of the genus Arthrospira by very sensitive total DNA restriction profile analysis. Res. Microbiol. 148:605-611.   DOI
4 Vonshak, A. 1997a. Outdoor mass production of Spirulina: the basic concept. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 79-99.
5 Vonshak, A. 1997b. Use of Spirulina biomass. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 205-212.
6 Wilmotte, A. & Golubic, S. 1991. Morphological and genetic criteria in the taxonomy of cyanophyta cyanobacteria. Algol. Stud. 64:1-24.
7 Nelissen, B., Wilmotte, A., Neefs, J. -M. & De Wachter, R. 1994. Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal RNA gene sequence analysis. Syst. Appl. Microbiol. 17:206-210.   DOI
8 Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S. & Watanabe, M. M. 1998. 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol. Lett. 164:119-124.   DOI
9 Pulz, O. & Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635-648.   DOI   ScienceOn
10 Robertson, B. R., Tezuka, N. & Watanabe, M. M. 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51:861-871.   DOI
11 Rudi, K., Skulberg, O. M. & Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180:3453-3461.
12 Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
13 Scheldeman, P., Baurain, D., Bouhy, R., Scott, M., Mühling, M., Whitton, B. A., Belay, A. & Wilmotte, A. 1999. Arthrospira ('Spirulina') strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiol. Lett. 172:213-222.   DOI
14 Teneva, I., Dzhambazov, B., Mladenov, R. & Schirmer, K. 2005. Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus. J. Phycol. 41:188-194.   DOI
15 Honda, D., Yokota, A. & Sugiyama, J. 1999. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J. Mol. Evol. 48:723-739.   DOI
16 Ishida, T., Yokota, A. & Sugiyama, J. 1997. Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence. J. Gen. Appl. Microbiol. 43:237-241.   DOI
17 Jukes, Y. & Cantor, C. 1969. Evolution of protein molecules. In Munro, H. N. (Ed.) Mammalian Protein Metabolism. Academic Press, New York, pp. 21-132.
18 Manen, J. -F. & Falquet, J. 2002. The cpcB-cpcA locus as a tool for the genetic characterization of the genus Arthrospira (Cyanobacteria): evidence for horizontal transfer. Int. J. Syst. Evol. Microbiol. 52:861-867.   DOI
19 Kim, S. -G., Rhee, S. -K., Ahn, C. -Y., Ko, S. -R., Choi, G. -G., Bae, J. -W., Park, Y. -H. & Oh, H. -M. 2006. Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl. Environ. Microbiol. 72:3252-3258.   DOI
20 Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L. & Sivonen, K. 2001. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int. J. Syst. Evol. Microbiol. 51:513-526.   DOI
21 Neilan, B. A., Jacobs, D. & Goodman, A. E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61:3875-3883.
22 Nelissen, B., De Baere, R., Wilmotte, A. & De Wachter, R. 1996. Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis. J. Mol. Evol. 42:194-200.   DOI
23 Bolch, C. J. S., Blackburn, S. I., Neilan, B. A. & Grewe, P. M. 1996. Genetic characterization of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking regions. J. Phycol. 32:445-451.   DOI
24 Cho, J. -C. & Giovannoni, S. J. 2003. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-proteobacteria. Int. J. Syst. Evol. Microbiol. 53:1031-1036.   DOI
25 Choi, A., Kim, S. -G., Yoon, B. -D. & Oh, H. -M. 2003. Growth and amino acid contents of Spirulina platensis with different nitrogen sources. Biotechnol. Bioprocess Eng. 8:368-372.   DOI
26 Dillon, J. C., Phuc, A. P. & Dubacq, J. P. 1995. Nutritional value of the alga Spirulina. World Rev. Nutr. Diet. 77:32-46.
27 Chun, J. & Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45:240-245.   DOI
28 Crosbie, N. D., Pöckl, M. & Weisse, T. 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol. 69:5716-5721.   DOI   ScienceOn
29 Desikachary, T. V. & Jeeji-Bai, N. 1996. Taxonomic studies in Spirulina II. The identification of Arthrospira ('Spirulina') strains and natural samples of different geographical origins. Algol. Stud. 83:163-178.
30 Geitler, L. 1932. Cyanophyceae. In Rabenhorst, L. (Ed.) Kryptogamen-Flora von Deutschland, Osterreichs und der Schweiz. Vol. 14. Akademische Verlagsgesellschaft, Leipzig, pp. 1-1196.
31 Holmes, E. C., Worobey, M. & Rambaut, A. 1999. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16:405-409.   DOI
32 Belay, A. 1997. Mass culture of Spirulina outdoors: the earthrise farms experience. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 131-158.
33 Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.   DOI   ScienceOn
34 Barker, G. L. A., Handley, B. A., Vacharapiyasophon, P., Stevens, J. R. & Hayes, P. K. 2000. Allele-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (cyanobacteria) filaments in the Baltic Sea. Microbiology 146:2865-2875.   DOI
35 Barker, G. L. A., Hayes, P. K., O'Mahony, S. L., Vacharapiyasophon, P. & Walsby, A. E. 1999. A molecular and phenotypic analysis of Nodularia (cyanobacteria) from the Baltic Sea. J. Phycol. 35:931-937.   DOI