• Title/Summary/Keyword: RNA 1 structure

Search Result 353, Processing Time 0.026 seconds

MiR-24 Simultaneously Regulates Both Oxytocin and Vasopressin (바소프레신과 옥시토신을 동시에 조절 마이크로RNA, miR-24)

  • Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.118-122
    • /
    • 2019
  • Oxytocin (Oxt) and vasopressin (Avp) are mainly synthesized in neuronal cells of the hypothalamus and are released from the posterior pituitary. The structure and sequences of Oxt and Avp genes imply that they are closely related and that they are the result of a duplication event during evolution. A previous study suggested that a small regulatory microRNA (miRNA), miR-24, regulated Oxt after binding. However, it is not clear whether this miRNA can modulate Avp simultaneously. The aim of the present study was to investigate putative targeting miRNAs of Avp, including miR-24. Targeted candidate miRNA oligonucleotides were transfected into COS-7 cells to elucidate the binding activity of miRNAs and Avp using dual-luciferase assays. The luciferase assay showed that only miR-24 displayed elevated binding activity with Avp as compared to a control and other candidate miRNAs. Transfection with seed mutants of Avp and miR-24 inhibitors clearly showed that miR-24 can directly bind to the Avp gene. These results provide new insight into the regulatory mechanism of neurohypophysial hormones by a single miRNA.

Effects of Dietary Glutamine and Glutamate Supplementation on Small Intestinal Structure, Active Absorption and DNA, RNA Concentrations in Skeletal Muscle Tissue of Weaned Piglets during d 28 to 42 of Age

  • Liu, Tao;Peng, Jian;Xiong, Yuanzhu;Zhou, Shiqi;Cheng, Xuehui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.238-242
    • /
    • 2002
  • Seventy-four piglets were used to investigate the effects of dietary glutamine (Gln) and glutamate (Glu) on the mucosal structure and active absorption of small intestinal, DNA and RNA concentrations of skeletal muscle tissue in piglets during d 28 to 42 of age. Postweaning piglets were fed for 14 d corn- and soybean meal-based diets supplemented with 0.0 or 1.0% L-Gln or L-Glu. On d 7 and 14 postweaning, pigs' small intestinal sections and longissimus dorsi were collected, at the same time, the D-xylose absorption test was conducted. The results suggested that in comparison to control piglets, jejunal atrophy during the first week postweaning was prevented by the glutamine and glutamate supplementation (1%) and the capability of small intestine to absorb Dxylose was improved. Furthermore the RNA concentration in skeletal muscle tissue was increased. These results provide an experimental basis for use of glutamine and glutamate on alleviating the weaning stresses and improving piglets' growth performance.

Aryl Sulfonamides Induce Degradation of Aryl Hydrocarbon Receptor Nuclear Translocator through CRL4DCAF15 E3 Ligase

  • Kim, Sung Ah;Jo, Seung-Hyun;Cho, Jin Hwa;Yu, Min Yeong;Shin, Ho-Chul;Kim, Jung-Ae;Park, Sung Goo;Park, Byoung Chul;Kim, Sunhong;Kim, Jeong-Hoon
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.935-944
    • /
    • 2020
  • Aryl hydrocarbon receptor nuclear translocator (ARNT) plays an essential role in maintaining cellular homeostasis in response to environmental stress. Under conditions of hypoxia or xenobiotic exposure, ARNT regulates the subset of genes involved in adaptive responses, by forming heterodimers with hypoxia-inducible transcription factors (HIF1α and HIF2α) or aryl hydrocarbon receptor (AhR). Here, we have shown that ARNT interacts with DDB1 and CUL4-associated factor 15 (DCAF15), and the aryl sulfonamides, indisulam and E7820, induce its proteasomal degradation through Cullin-RING finger ligase 4 containing DCAF15 (CRL4DCAF15) E3 ligase. Moreover, the two known neo-substrates of aryl sulfonamide, RNA-binding motif protein 39 (RBM39) and RNA-binding motif protein 23 (RBM23), are not required for ARNT degradation. In line with this finding, aryl sulfonamides inhibited the transcriptional activities of HIFs and AhR associated with ARNT. Our results collectively support novel regulatory roles of aryl sulfonamides in both hypoxic and xenobiotic responses.

Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing

  • Hong, Yoonki;Kim, Woo Jin;Bang, Chi Young;Lee, Jae Cheol;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.2
    • /
    • pp.85-90
    • /
    • 2016
  • Background: Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. Methods: RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. Results: RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. Conclusion: In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

Genetic Reassortment of Rice stripe virus RNA Segments Detected by RT-PCR Restriction Enzyme Analysis-based Method

  • Jonson, Miranda Gilda;Lian, Sen;Choi, Hong-Soo;Lee, Gwan-Seok;Kim, Chang-Suk;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Our previous sequence and phylogenetic analyses of the Korean Rice stripe virus (RSV) suggested possible genetic reassortment of RNA segments, but whether this RNA variation contributed to the recent RSV outbreaks in Korea is yet unclear. To further clarify these RSV-RNA segment variations, we developed a reverse transcription-polymerase reaction/restriction enzyme (RT-PCR/RE) analysis-based method. We identified five REs, including DraI, EcoR1, NdeI/AseI, and SpeI, that could differentiate RSV RNA 1-4 subtypes, respectively. Our RT-PCR/RE results provided a clear pattern of RNA reassortment, i.e., different groups of isolates having their RNA segments derived from two to three different RSV ancestors, such as from Eastern and Southwestern Chinese or Japanese M and T isolates. We also found that the migratory small brown planthopper from Eastern China caught by aerial net traps that possesses RSV-RNA3 genotypes corresponds mainly to Eastern China, with a few for Southwestern China based on RT-PCR/RE, sequence and phylogenetic analyses, indicating that RSV populations in Eastern China may also have strong RNA variation. The development of an RE analysisbased method proved a useful epidemiological tool for rapid genotyping and identification of mixed infections by RSV strain and by different subtype.

A Study on the Nucleotide Analysis of 18S rRNA and the Molecular Evolution of the Korean Decapods(II) (한국산 십각류의 18S 리보솜 RNA의 염기분석과 분자진화에 관한 연구(II))

  • Kim, Won;Min, Gi-Sik;Kim, Sang-Hee
    • Animal Systematics, Evolution and Diversity
    • /
    • no.nspc3
    • /
    • pp.139-146
    • /
    • 1992
  • The primary sequence of the 18S rRNA gene of a crustacean Pugettia quadridens (Decapoda: Pleocyemata: Brachyura) was determined by the PCR cloning and Taq sequencing. The 18S rRNA gene of this species in 1837 bases long, and 46 bases shorter than that of another crustacean decapod Oedignathus inermis. The similarity between two species is 90.8% when the insertion and/or deletion sites were excluded. Within the molecule, the most conservative (identical) region locates at the position of 1137-1206 and it is 70 bases long. The most long consecutive nucleotide differences occur at the position between 46-55 and the second most between 399-407. The sequence variation in the primary structure of 18S rRNA gene are not evenly distributed throughout the molecule.

  • PDF

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

1H, 15N and 13C resonance assignment and secondary structure prediction of ss-DNA binding protein 12RNP2 precursor, HP0827 from Helicobacter pylori

  • Jang, Sun-Bok;Ma, Chao;Chandan, Pathak Chinar;Kim, Do-Hee;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • HP0827 has two RNP motif which is a very common protein domain involved in recognition of a wide range of ssRNA/DNA.We acquired 3D NMR spectra of HP0827 which shows well dispersed and homogeneous signals which allows us to assign 98% of all $^1H_N$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C$=O resonances and 90% of all sidechain resonances. The sequence-specific backbone resonance assignment of HP0827 can be used to gain deeper insights into the nucleic acids binding specificity of HP0827 in the future study. Here, we report secondary structure prediction of HP0827 derived from NMR data. Additionally, ssRNA/DNA binding assay studies was also conducted. This study might provide a clue for exact function of HP0827 based on structure and sequence.

Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

  • Cardenas, Erick;Cole, James R.;Tiedje, James M.;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.