Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0122

Aryl Sulfonamides Induce Degradation of Aryl Hydrocarbon Receptor Nuclear Translocator through CRL4DCAF15 E3 Ligase  

Kim, Sung Ah (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Jo, Seung-Hyun (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Cho, Jin Hwa (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Yu, Min Yeong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Shin, Ho-Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Jung-Ae (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Sung Goo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Byoung Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Jeong-Hoon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) plays an essential role in maintaining cellular homeostasis in response to environmental stress. Under conditions of hypoxia or xenobiotic exposure, ARNT regulates the subset of genes involved in adaptive responses, by forming heterodimers with hypoxia-inducible transcription factors (HIF1α and HIF2α) or aryl hydrocarbon receptor (AhR). Here, we have shown that ARNT interacts with DDB1 and CUL4-associated factor 15 (DCAF15), and the aryl sulfonamides, indisulam and E7820, induce its proteasomal degradation through Cullin-RING finger ligase 4 containing DCAF15 (CRL4DCAF15) E3 ligase. Moreover, the two known neo-substrates of aryl sulfonamide, RNA-binding motif protein 39 (RBM39) and RNA-binding motif protein 23 (RBM23), are not required for ARNT degradation. In line with this finding, aryl sulfonamides inhibited the transcriptional activities of HIFs and AhR associated with ARNT. Our results collectively support novel regulatory roles of aryl sulfonamides in both hypoxic and xenobiotic responses.
Keywords
aryl hydrocarbon receptor nuclear translocator; aryl sulfonamide; cullin ring ubiquitin ligase; DDB1 and CUL4 associated factor 15; E7820; indisulam;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abel, J. and Haarmann-Stemmann, T. (2010). An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol. Chem. 391, 1235-1248.   DOI
2 Assi, R., Kantarjian, H.M., Kadia, T.M., Pemmaraju, N., Jabbour, E., Jain, N., Daver, N., Estrov, Z., Uehara, T., Owa, T., et al. (2018). Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124, 2758-2765.   DOI
3 Bosu, D.R. and Kipreos, E.T. (2008). Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div. 3, 7.   DOI
4 Bussiere, D.E., Xie, L., Srinivas, H., Shu, W., Burke, A., Be, C., Zhao, J., Godbole, A., King, D., Karki, R.G., et al. (2020). Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15-23.   DOI
5 Du, X., Volkov, O.A., Czerwinski, R.M., Tan, H., Huerta, C., Morton, E.R., Rizzi, J.P., Wehn, P.M., Xu, R., Nijhawan, D., et al. (2019). Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625-1633.e3.   DOI
6 Faust, T.B., Yoon, H., Nowak, R.P., Donovan, K.A., Li, Z., Cai, Q., Eleuteri, N.A., Zhang, T., Gray, N.S., and Fischer, E.S. (2020). Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7-14.   DOI
7 Gradin, K., McGuire, J., Wenger, R.H., Kvietikova, I., fhitelaw, M.L., Toftgard, R., Tora, L., Gassmann, M., and Poellinger, L. (1996). Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. 16, 5221-5231.   DOI
8 Hannah, J. and Zhou, P. (2015). Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 573, 33-45.   DOI
9 Haddad, R.I., Weinstein, L.J., Wieczorek, T.J., Bhattacharya, N., Raftopoulos, H., Oster, M.W., Zhang, X., Latham, V.M., Jr., Costello, R., Faucher, J., et al. (2004). A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin. Cancer Res. 10, 4680-4687.   DOI
10 Han, T., Goralski, M., Gaskill, N., Capota, E., Kim, J., Ting, T.C., Xie, Y., Williams, N.S., and Nijhawan, D. (2017). Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755.   DOI
11 Hsiehchen, D., Goralski, M., Kim, J., Xie, Y., and Nijhawan, D. (2020). Biomarkers for RBM39 degradation in acute myeloid leukemia. Leukemia 34, 1924-1928.   DOI
12 Hughes, S.J. and Ciulli, A. (2017). Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 61, 505-516.   DOI
13 Kobayashi, A., Numayama-Tsuruta, K., Sogawa, K., and Fujii-Kuriyama, Y. (1997). CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J. Biochem. 122, 703-710.   DOI
14 Huttlin, E.L., Bruckner, R.J., Paulo, J.A., Cannon, J.R., Ting, L., Baltier, K., Colby, G., Gebreab, F., Gygi, M.P., Parzen, H., et al. (2017). Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505-509.   DOI
15 Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., et al. (2015). The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425-440.   DOI
16 Jung, D.J., Na, S.Y., Na, D.S., and Lee, J.W. (2002). Molecular cloning and characterization of CAPER, a novel coactivator of activating protein-1 and estrogen receptors. J. Biol. Chem. 277, 1229-1234.   DOI
17 Kang, Y.K., Putluri, N., Maity, S., Tsimelzon, A., Ilkayeva, O., Mo, Q., Lonard, D., Michailidis, G., Sreekumar, A., Newgard, C.B., et al. (2015). CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-alpha-Gabpa and stress-induced adaptive responses via NF-kappaB-cMYC. PLoS Genet. 11, e1005116.   DOI
18 Klinge, C.M., Bowers, J.L., Kulakosky, P.C., Kamboj, K.K., and Swanson, H.I. (1999). The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Mol. Cell. Endocrinol. 157, 105-119.   DOI
19 Lee, J. and Zhou, P. (2007). DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775-780.   DOI
20 Kronke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., Svinkina, T., Heckl, D., Comer, E., Li, X., et al. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301-305.   DOI
21 Mai, S., Qu, X., Li, P., Ma, Q., Cao, C., and Liu, X. (2016). Global regulation of alternative RNA splicing by the SR-rich protein RBM39. Biochim. Biophys. Acta 1859, 1014-1024.   DOI
22 Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A., and Simon, M.C. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403-407.   DOI
23 Mandl, M. and Depping, R. (2017). ARNT is a potential direct HIF-1 target gene in human Hep3B hepatocellular carcinoma cells. Cancer Cell Int. 17, 77.   DOI
24 McIntosh, B.E., Hogenesch, J.B., and Bradfield, C.A. (2010). Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625-645.   DOI
25 Ting, T.C., Goralski, M., Klein, K., Wang, B., Kim, J., Xie, Y., and Nijhawan, D. (2019). Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15. Cell Rep. 29, 1499-1510.e6.   DOI
26 Owa, T., Yoshino, H., Okauchi, T., Yoshimatsu, K., Ozawa, Y., Sugi, N.H., Nagasu, T., Koyanagi, N., and Kitoh, K. (1999). Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 42, 3789-3799.   DOI
27 Reisz-Porszasz, S., Probst, M.R., Fukunaga, B.N., and Hankinson, O. (1994). Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol. Cell. Biol. 14, 6075-6086.   DOI
28 Rezvani, H.R., Ali, N., Nissen, L.J., Harfouche, G., de Verneuil, H., Taieb, A., and Mazurier, F. (2011). HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J. Invest. Dermatol. 131, 1793-1805.   DOI
29 Scheuermann, T.H., Yang, J., Zhang, L., Gardner, K.H., and Bruick, R.K. (2007). Hypoxia-inducible factors Per/ARNT/Sim domains: structure and function. Methods Enzymol. 435, 3-24.   DOI
30 Sogawa, K., Nakano, R., Kobayashi, A., Kikuchi, Y., Ohe, N., Matsushita, N., and Fujii-Kuriyama, Y. (1995). Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc. Natl. Acad. Sci. U. S. A. 92, 1936-1940.   DOI
31 Uehara, T., Minoshima, Y., Sagane, K., Sugi, N.H., Mitsuhashi, K.O., Yamamoto, N., Kamiyama, H., Takahashi, K., Kotake, Y., Uesugi, M., et al. (2017). Selective degradation of splicing factor CAPERalpha by anticancer sulfonamides. Nat. Chem. Biol. 13, 675-680.   DOI
32 Van Kesteren, C., Beijnen, J.H., and Schellens, J.H. (2002). E7070: a novel synthetic sulfonamide targeting the cell cycle progression for the treatment of cancer. Anticancer Drugs 13, 989-997.   DOI
33 Zhu, Y.X., Braggio, E., Shi, C.X., Kortuem, K.M., Bruins, L.A., Schmidt, J.E., Chang, X.B., Langlais, P., Luo, M., Jedlowski, P., et al. (2014). Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood 124, 536-545.
34 Vorrink, S.U. and Domann, F.E. (2014). Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1alpha signaling node. Chem. Biol. Interact. 218, 82-88.   DOI
35 Wang, E., Lu, S.X., Pastore, A., Chen, X., Imig, J., Chun-Wei Lee, S., Hockemeyer, K., Ghebrechristos, Y.E., Yoshimi, A., Inoue, D., et al. (2019). Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369-384.e7.   DOI
36 Weir, L., Robertson, D., Leigh, I.M., Vass, J.K., and Panteleyev, A.A. (2011). Hypoxia-mediated control of HIF/ARNT machinery in epidermal keratinocytes. Biochim. Biophys. Acta 1813, 60-72.   DOI
37 Wolff, M., Jelkmann, W., Dunst, J., and Depping, R. (2013). The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT/HIF-1beta) is influenced by hypoxia and hypoxia-mimetics. Cell. Physiol. Biochem. 32, 849-858.   DOI
38 Wood, S.M., Gleadle, J.M., Pugh, C.W., Hankinson, O., and Ratcliffe, P.J. (1996). The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J. Biol. Chem. 271, 15117-15123.   DOI
39 Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.   DOI