DOI QR코드

DOI QR Code

Aryl Sulfonamides Induce Degradation of Aryl Hydrocarbon Receptor Nuclear Translocator through CRL4DCAF15 E3 Ligase

  • Kim, Sung Ah (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jo, Seung-Hyun (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Jin Hwa (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yu, Min Yeong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Ho-Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jung-Ae (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sung Goo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Byoung Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jeong-Hoon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2020.05.21
  • Accepted : 2020.07.01
  • Published : 2020.11.30

Abstract

Aryl hydrocarbon receptor nuclear translocator (ARNT) plays an essential role in maintaining cellular homeostasis in response to environmental stress. Under conditions of hypoxia or xenobiotic exposure, ARNT regulates the subset of genes involved in adaptive responses, by forming heterodimers with hypoxia-inducible transcription factors (HIF1α and HIF2α) or aryl hydrocarbon receptor (AhR). Here, we have shown that ARNT interacts with DDB1 and CUL4-associated factor 15 (DCAF15), and the aryl sulfonamides, indisulam and E7820, induce its proteasomal degradation through Cullin-RING finger ligase 4 containing DCAF15 (CRL4DCAF15) E3 ligase. Moreover, the two known neo-substrates of aryl sulfonamide, RNA-binding motif protein 39 (RBM39) and RNA-binding motif protein 23 (RBM23), are not required for ARNT degradation. In line with this finding, aryl sulfonamides inhibited the transcriptional activities of HIFs and AhR associated with ARNT. Our results collectively support novel regulatory roles of aryl sulfonamides in both hypoxic and xenobiotic responses.

Keywords

References

  1. Abel, J. and Haarmann-Stemmann, T. (2010). An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol. Chem. 391, 1235-1248. https://doi.org/10.1515/bc.2010.128
  2. Assi, R., Kantarjian, H.M., Kadia, T.M., Pemmaraju, N., Jabbour, E., Jain, N., Daver, N., Estrov, Z., Uehara, T., Owa, T., et al. (2018). Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124, 2758-2765. https://doi.org/10.1002/cncr.31398
  3. Bosu, D.R. and Kipreos, E.T. (2008). Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div. 3, 7. https://doi.org/10.1186/1747-1028-3-7
  4. Bussiere, D.E., Xie, L., Srinivas, H., Shu, W., Burke, A., Be, C., Zhao, J., Godbole, A., King, D., Karki, R.G., et al. (2020). Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15-23. https://doi.org/10.1038/s41589-019-0411-6
  5. Du, X., Volkov, O.A., Czerwinski, R.M., Tan, H., Huerta, C., Morton, E.R., Rizzi, J.P., Wehn, P.M., Xu, R., Nijhawan, D., et al. (2019). Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625-1633.e3. https://doi.org/10.1016/j.str.2019.10.005
  6. Faust, T.B., Yoon, H., Nowak, R.P., Donovan, K.A., Li, Z., Cai, Q., Eleuteri, N.A., Zhang, T., Gray, N.S., and Fischer, E.S. (2020). Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7-14. https://doi.org/10.1038/s41589-019-0378-3
  7. Gradin, K., McGuire, J., Wenger, R.H., Kvietikova, I., fhitelaw, M.L., Toftgard, R., Tora, L., Gassmann, M., and Poellinger, L. (1996). Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. 16, 5221-5231. https://doi.org/10.1128/MCB.16.10.5221
  8. Haddad, R.I., Weinstein, L.J., Wieczorek, T.J., Bhattacharya, N., Raftopoulos, H., Oster, M.W., Zhang, X., Latham, V.M., Jr., Costello, R., Faucher, J., et al. (2004). A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin. Cancer Res. 10, 4680-4687. https://doi.org/10.1158/1078-0432.CCR-04-0229
  9. Han, T., Goralski, M., Gaskill, N., Capota, E., Kim, J., Ting, T.C., Xie, Y., Williams, N.S., and Nijhawan, D. (2017). Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755. https://doi.org/10.1126/science.aal3755
  10. Hannah, J. and Zhou, P. (2015). Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 573, 33-45. https://doi.org/10.1016/j.gene.2015.08.064
  11. Hsiehchen, D., Goralski, M., Kim, J., Xie, Y., and Nijhawan, D. (2020). Biomarkers for RBM39 degradation in acute myeloid leukemia. Leukemia 34, 1924-1928. https://doi.org/10.1038/s41375-020-0729-9
  12. Hughes, S.J. and Ciulli, A. (2017). Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 61, 505-516. https://doi.org/10.1042/EBC20170041
  13. Huttlin, E.L., Bruckner, R.J., Paulo, J.A., Cannon, J.R., Ting, L., Baltier, K., Colby, G., Gebreab, F., Gygi, M.P., Parzen, H., et al. (2017). Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505-509. https://doi.org/10.1038/nature22366
  14. Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., et al. (2015). The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425-440. https://doi.org/10.1016/j.cell.2015.06.043
  15. Jung, D.J., Na, S.Y., Na, D.S., and Lee, J.W. (2002). Molecular cloning and characterization of CAPER, a novel coactivator of activating protein-1 and estrogen receptors. J. Biol. Chem. 277, 1229-1234. https://doi.org/10.1074/jbc.M110417200
  16. Kang, Y.K., Putluri, N., Maity, S., Tsimelzon, A., Ilkayeva, O., Mo, Q., Lonard, D., Michailidis, G., Sreekumar, A., Newgard, C.B., et al. (2015). CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-alpha-Gabpa and stress-induced adaptive responses via NF-kappaB-cMYC. PLoS Genet. 11, e1005116. https://doi.org/10.1371/journal.pgen.1005116
  17. Klinge, C.M., Bowers, J.L., Kulakosky, P.C., Kamboj, K.K., and Swanson, H.I. (1999). The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Mol. Cell. Endocrinol. 157, 105-119. https://doi.org/10.1016/S0303-7207(99)00165-3
  18. Kobayashi, A., Numayama-Tsuruta, K., Sogawa, K., and Fujii-Kuriyama, Y. (1997). CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J. Biochem. 122, 703-710. https://doi.org/10.1093/oxfordjournals.jbchem.a021812
  19. Kronke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., Svinkina, T., Heckl, D., Comer, E., Li, X., et al. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301-305. https://doi.org/10.1126/science.1244851
  20. Lee, J. and Zhou, P. (2007). DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775-780. https://doi.org/10.1016/j.molcel.2007.06.001
  21. Mai, S., Qu, X., Li, P., Ma, Q., Cao, C., and Liu, X. (2016). Global regulation of alternative RNA splicing by the SR-rich protein RBM39. Biochim. Biophys. Acta 1859, 1014-1024. https://doi.org/10.1016/j.bbagrm.2016.06.007
  22. Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A., and Simon, M.C. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403-407. https://doi.org/10.1038/386403a0
  23. Mandl, M. and Depping, R. (2017). ARNT is a potential direct HIF-1 target gene in human Hep3B hepatocellular carcinoma cells. Cancer Cell Int. 17, 77. https://doi.org/10.1186/s12935-017-0446-2
  24. McIntosh, B.E., Hogenesch, J.B., and Bradfield, C.A. (2010). Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625-645. https://doi.org/10.1146/annurev-physiol-021909-135922
  25. Owa, T., Yoshino, H., Okauchi, T., Yoshimatsu, K., Ozawa, Y., Sugi, N.H., Nagasu, T., Koyanagi, N., and Kitoh, K. (1999). Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 42, 3789-3799. https://doi.org/10.1021/jm9902638
  26. Reisz-Porszasz, S., Probst, M.R., Fukunaga, B.N., and Hankinson, O. (1994). Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol. Cell. Biol. 14, 6075-6086. https://doi.org/10.1128/MCB.14.9.6075
  27. Rezvani, H.R., Ali, N., Nissen, L.J., Harfouche, G., de Verneuil, H., Taieb, A., and Mazurier, F. (2011). HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J. Invest. Dermatol. 131, 1793-1805. https://doi.org/10.1038/jid.2011.141
  28. Scheuermann, T.H., Yang, J., Zhang, L., Gardner, K.H., and Bruick, R.K. (2007). Hypoxia-inducible factors Per/ARNT/Sim domains: structure and function. Methods Enzymol. 435, 3-24. https://doi.org/10.1016/S0076-6879(07)35001-5
  29. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. https://doi.org/10.1038/nrc1187
  30. Sogawa, K., Nakano, R., Kobayashi, A., Kikuchi, Y., Ohe, N., Matsushita, N., and Fujii-Kuriyama, Y. (1995). Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc. Natl. Acad. Sci. U. S. A. 92, 1936-1940. https://doi.org/10.1073/pnas.92.6.1936
  31. Ting, T.C., Goralski, M., Klein, K., Wang, B., Kim, J., Xie, Y., and Nijhawan, D. (2019). Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15. Cell Rep. 29, 1499-1510.e6. https://doi.org/10.1016/j.celrep.2019.09.079
  32. Uehara, T., Minoshima, Y., Sagane, K., Sugi, N.H., Mitsuhashi, K.O., Yamamoto, N., Kamiyama, H., Takahashi, K., Kotake, Y., Uesugi, M., et al. (2017). Selective degradation of splicing factor CAPERalpha by anticancer sulfonamides. Nat. Chem. Biol. 13, 675-680. https://doi.org/10.1038/nchembio.2363
  33. Van Kesteren, C., Beijnen, J.H., and Schellens, J.H. (2002). E7070: a novel synthetic sulfonamide targeting the cell cycle progression for the treatment of cancer. Anticancer Drugs 13, 989-997. https://doi.org/10.1097/00001813-200211000-00002
  34. Vorrink, S.U. and Domann, F.E. (2014). Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1alpha signaling node. Chem. Biol. Interact. 218, 82-88. https://doi.org/10.1016/j.cbi.2014.05.001
  35. Wang, E., Lu, S.X., Pastore, A., Chen, X., Imig, J., Chun-Wei Lee, S., Hockemeyer, K., Ghebrechristos, Y.E., Yoshimi, A., Inoue, D., et al. (2019). Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369-384.e7. https://doi.org/10.1016/j.ccell.2019.01.010
  36. Weir, L., Robertson, D., Leigh, I.M., Vass, J.K., and Panteleyev, A.A. (2011). Hypoxia-mediated control of HIF/ARNT machinery in epidermal keratinocytes. Biochim. Biophys. Acta 1813, 60-72. https://doi.org/10.1016/j.bbamcr.2010.11.014
  37. Wolff, M., Jelkmann, W., Dunst, J., and Depping, R. (2013). The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT/HIF-1beta) is influenced by hypoxia and hypoxia-mimetics. Cell. Physiol. Biochem. 32, 849-858. https://doi.org/10.1159/000354487
  38. Wood, S.M., Gleadle, J.M., Pugh, C.W., Hankinson, O., and Ratcliffe, P.J. (1996). The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J. Biol. Chem. 271, 15117-15123. https://doi.org/10.1074/jbc.271.25.15117
  39. Zhu, Y.X., Braggio, E., Shi, C.X., Kortuem, K.M., Bruins, L.A., Schmidt, J.E., Chang, X.B., Langlais, P., Luo, M., Jedlowski, P., et al. (2014). Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood 124, 536-545.