유비쿼터스 사회에서는 사용자의 요구를 충족시키기 위하여 사용자가 갖고 있는 기기에 대한 정밀한 위치측정을 필요로 한다. 위치 측정은 송수신기간에 신호의 전송을 기반으로 한 거리측정을 통해 이뤄지기 때문에 위치측정의 오차는 거리측정의 오차로부터 발생한다. 신호가 전송되는 기기 간에 장애물이 존재하게 되면 LoS(Line of Sight)신호 성분이 줄어들게 되어 NLoS(Non-Line of Sight) 채널이 발생하게 되고 정확한 시점에서 신호를 검출할 수 없게 되어 거리오차가 발생하게 된다. 일반적인 위치측정 알고리즘은 참조기기(Reference Device)의 거리측정 성능에 관계없이 참조기기와 목표기기(Target Device)간의 거리측정 값을 위치 계산에 그대로 사용하기 때문에 거리측정 값으로부터 발생되는 오차가 위치 계산에 더해지게 된다. 따라서 본 논문에서는 각 참조기기가 속해 있는 채널특성을 판별하고 NLoS채널로부터 계산된 거리와 LoS채널로부터 계산된 거리를 다른 비율로 적용하여 위치측정의 오차를 줄이는 Iterative Calculation 기법을 제안한다. 참조기기는 수신된 신호의 Kurtosis, Mean, Excess Delay, RMS Delay spread를 통해 NLoS와 LoS 채널을 구분한다. 이를 통해 구분된 채널마다 각기 다른 비율로 랜덤 거리를 계산된 거리에 더하여 위치를 계산하는 것을 반복적으로 수행한 뒤 평균값을 계산하여 확률적으로 존재할 가능성이 높은 목표기기의 위치를 찾아감으로써 NLoS채널로부터 계산된 거리오차가 위치측정에 미치는 영향을 줄이는 방법을 제안하고 시뮬레이션을 통해 기존의 방식과 비교했을 때 성능향상을 확인하였다.
금강하구 연안역에서 HF radar로 측정한 유속의 정확도를 평가하기 위해 HF radar의 마주보는 radial 유속들을 비교하고, HF radar로 측정한 유속을 현장측정 유속과 비교하였다. 비교 자료들에 대한 회귀선과 편차는 주성분 분석(Principal Component Analysis)으로 구하였다. HF radar site를 연결하는 선의 중간지점에서 마주보는 radial vector를 비교하였을 때 RMS 편차는 동계에 4.4 cm/s, 하계에 5.4 cm/s이었다. HF radar와 유속계로 측정한 유속성분을 비교하여 분석된 RMS 편차에서 GDOP(Geometric Dilution of Precision) 효과를 제거하였을 때 HF radar의 합성 속도 측정오차는 GDOP 값이 적절한 정점들에서 5.1 cm/s 이내였다. 서로 다른 두 방법에 의해 구해진 이 결과는 연구해역에서 HF radar로 측정된 유속의 정확도 하한이 5.4 cm/s임을 제시한다. 기존의 연구에서와 같이 RMS 편차는 섬 주변에 있는 관측점에서 크게 되고, 두 radar에서 평균거리가 멀어질수록 신호 대 잡음수준과 radial vector 교차각의 감소로 인해 증가하였다. GDOP 값을 이용한 오차분리 과정에서 속도성분별 GDOP 값이 유사하고 비교 유속의 성분별 RMS 편차도 비슷한 값을 보이는 경우 HF radar 유속의 오차가 불확실한 값으로 도출될 수도 있음이 밝혀졌다. GDOP가 정상적인 radar 관측 범위 내에 있는 정점에서 측정된 유속을 조류와 해류로 분리하였을 때 HF radar 유속에서 구해진 조류타원의 특성은 유속계로 측정된 타원특성과 잘 부합하였고, 해류의 시간적 변화는 바람과 밀도장의 외력에 의한 물리적 과정을 반영하는 반응을 보였다.
미래의 교통체계를 대비하기 위하여 차량 전자장비의 기술도 급속히 발전하고 있다. 특히, 자율주행의 연구는 활발히 이루어지고 있으며, 정확하고 믿을 수 있는 위치결정이 가장 중요한 요구사항이다. 그러나 도심지역에서 위치결정의 가장 큰 문제점은 위선 신호 단절과 다중경로 오차이다. 본 논문에서는 GPS(Global Positioning System) 단독으로 이상신호를 판단하고 이를 제거 또는 측정치를 추정하여 위치결정하는 방법을 제안하였다. GPS 신호만으로 다중경로 혹은 위성신호차단을 판단하기 위하여 앙각과 신호잡음비 데이터간의 연관관계를 정의하였으며, 이를 기준으로 측정치를 추정할 것인지 제거할 것인지를 결정하며, 정상상태 신호의 시차분 측정치를 이용하여 현재 측정치를 추정할 수 있다. 제안한 알고리즘의 효용성을 검증하기 위하여 차량을 이용하여 도심에서 실험을 수행하였다. 제안한 이상신호 판단 기준을 통하여 전체 실험 수행구간중 이상신호는 11% 발생하였으며, 크게는 100m가량의 오차를 보였다. 이러한 이상신호를 제거하거나 측정치를 추정하여 위치결정 결과 수평측위오차가 RMS 9.48m 향상되었다.
지형효과를 포함하는 3차원 전기비저항 역산법은 전기비저항 탐사자료의 해석에 있어서 실제 지하구조에 존재하는 3차원 전도성 이상체의 특성을 파악함으로써 원리적으로 정확한 영상을 획득할 수 있는 방법이라고 본다. 본 연구는 수치모델링에서 유한요소법을 이용하였으며, 역산에서 설정된 블록에 대하여 감도 분석을 통하여 자코비안 계산의 효율성을 극대화하였다. 또한 역산과정에서는 라그랑지 곱수의 값을 변화시키면서 최소자승근 오차의 최소가 되는 최적의 값을 선택하는 방법으로 역산의 분해능을 향상 시켰다. 전기비저항 탐사에서 지형효과의 해석으로는 지형 의 기복을 포함하여 얻어진 순차모델링 자료를 가지고 역산 방법에서 지형의 기복을 무시하여 얻어진 결과와 지형의 기복을 포함하여 얻어진 결과를 비교하여 불규칙한 지형효과에 의한 왜곡된 전기장 반응으로 인한 오해석을 파악하는데 있다.
The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.
모멘트법(MoM)인 TE(transversw electric) 전장 적분 방정식(EFIE)으로 완전 전기도체(PEC) 원통을 산란 해석하였다. 이 과정에서 나타나는 특이점(singlarity)과 과대 특이점(hypersingularity)을 포함한 적분 계산은 어렵기 때문에 수치해석 방법으로 특이점을 고립시켜 자체항(self-term)을 얻었다. 모멘트법에서 base 함수와 test 함수의 선택은 수치해석 결과의 정확도와 수렴에 있어 매우 중요한 요인이됨은 알려져 있는 사실이다. basis 함수와 test함수를 달리하여 세 가지 방법으로 PEC 원통에 유도된 전류를 구하였다. 이렇게 구한 결과를 해석학적 방법과 모멘트법에서 얻은 전류와 비교하여 상대 효율 전류 오차를 구하였으며 어떤 결합 방법이 효율적인지 확인하였다. 또한 각 결합방법에 따른 상대 효율 전류 오차의 수렴율을 구하여 가장 정확한 결과를 얻을 조건을 찾았다. 전류 오차의 가장 빠른 수렴오더(order of convergence) 2.528은 펄스 base 함수/델타 test 함수 결함 조건에서 얻었다.
요역동학검사는 하부요로계의 이상증상을 진단하기위하여 수행된다. 일반적으로 임상에서 행해지는 요역동학검사에서는 침습적인 방법으로 방광을 채운 후 배뇨하는 절차를 거친다. 하지만 이러한 방법은 카테터를 삽입해야하므로 환자에게 고통을 수반하게 한다. 본 연구에서는 비침습적이고 보다 편리한 방법으로 하부요로계의 기능을 평가할 수 있는 시스템을 구현하고자 하였다. 비침습적인 방법으로 하부요로증상(lower urinary tract symptoms, LUTS)의 진단을 위하여 배뇨시 요속, 요류음, 비침습적 방광내압을 측정할 수 있는 시스템을 구현하였다. 구현된 시스템은 센서부, 신호처리부, FPGA를 이용한 시스템 제어부 그리고 PC모니터링 프로그램으로 구성하였다. 그리고 구현된 계측시스템의 평가를 위하여 FPGA 시스템 제이부의 시뮬레이션을 수행하였고 인체의 하부요로계를 모식화한 실험장치를 구현하였다. 실험장치를 이용한 측정부의 평가결과 요속측정부의 평균에러율이 1.08%, 계수변화율이 1.48로 평가되었다. 그리고 비침습적 방광내압부는 평균에러율이 2.41%, 계수변화율이 2.81로 나타났다. 요류음신호의 시간영역과 주파수영역에서의 분석위해 평균실효치전력(average RMS power)과 주파수영역에서의 중심주파수(median frequency, MF)를 분석하였으며, 그 결과 $60{\sim}160Hz$의 중심주파수대에서 폐색을 가장 잘 반영하였다.
직경 200mm의 실리콘 기판에 균일한 코발트 금속박막을 증착하는 DC-스퍼터 장비에서 공정변수는 증착온도, 증착압력, DC power로 하고 종속변수(response)는 면저항, 면저항 균일도로 하는 '||'&'||'quot;통계적 실험방법'||'&'||'quot;을 채택한 실험을 수행하여 Co 박막의 공정 특성에 대해 다음과 같은 결과를 얻었다 '||'&'||'quot;통계적 실험방법'||'&'||'quot;을 이용한 Co박막의 공정 특성을 조사하는 본 실험에서 면저항과 면저항 균일도는 0.05 이하의 significance수치. 낮은 RMS error, 0.91 이상의 R-sq수치로부터 실험의 우수한 신뢰성을 확인하였다. 면저항에 대한 공정변수의 영향성은 증착온도가 -1.83$\Omega$/$\square$의 감소효과, 증착압럭이 1.17$\Omega$/$\square$의 증가 효과. DC power가 -0.65$\Omega$/$\square$의 감소 효과로 실험 구간에서 일정한 경향의 영향성을 보였으며, 면저항 균일도에서는 증착온도에 의해 $25^{\circ}C$~147$^{\circ}C$에서 -4.04%의 감소로 증착온도에 가장 민감함을 확인하였다. Co 박막의 최적 증착 조건은 증착온도 $25^{\circ}C$, 증착압력 12mTorr, DC power 1500 W로 예상되었다.
현재 Kompsat-2 영상을 이용한 정밀 DEM 제작에 관한 연구는 미비한 실정이다. 본 논문에서는 Kompsat-2 위성영상을 이용하여 정밀 DEM을 제작하고, 이렇게 제작된 DEM을 상용 소프트웨어인 PCI Geomatica, ENVI에서 제작된 DEM과의 비교를 통해 그 성능을 분석하였다. DEM의 제작을 위해 Kompsat-2에 가장 적합하다고 보고된 궤도-자세각 모델을 사용하였으며, 에피폴라 곡선의 기하학적 요소들을 이용한 정합방식을 사용하여 Kompsat-2 DEM의 제작을 시도하였다. 각 상용프로그램과의 성능의 비교는 육안을 통한 정성적 실험과, USGS DTED를 이용한 정량적 실험으로 이루어졌다. 정확도는 DTED와의 평균절대오차, RMS 오차로 판단하였으며, 비교 실험 결과, 대부분의 영상에서 실험에 사용한 방식이 다른 상용 프로그램에서 제작된 DEM보다 더 좋은 성능을 보여줌을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.