• Title/Summary/Keyword: RMS 지연 확산

Search Result 32, Processing Time 0.021 seconds

A Study on the Radio Wave Propagation Model in IMT-2000 (IMT-2000 주파수대역에서의 전파-전파 모델에 관한 연구)

  • Ra, Yoo-Chan;Lee, Seung-Woo;Shin, Hong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.224-231
    • /
    • 2003
  • In this in this thesis, we have proposed the Kor-231 which compared with Hata by dividing 4 classes and 8 details, which based on that the area subdivision which is defined by the City planning Regulation of Korea classified on its rate of building-to-land, floor area and distance between buliding and botanical coefficient. The experiments are carried out at the point of the RMS delay spread and the recerived power in the two kinds of geographical areas, LOS(Line of Sight) and N-LOS(Non Line of Sight). When the measured result is compared with Kor-231 model, we can catch the result that received power are 25.5dB and 14.5dB, the RMS delay spread are 101ns and 35ns and N-LOS received power are 4.1dB and 1.6dB. So we have certified that it is well due to the result analyzed into the difference of the RMS delay spread from 74ns to 200ns.

Radio Propagation Characteristics of Different Frequency Bands in Multiple Paths According to Antenna Position in an Indoor Lobby Environment (실내 로비 환경에서 안테나 위치에 따른 다중 경로의 서로 다른 주파수 대역의 전파 특성)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The radio propagation characteristics of the 6, 10, and 17 GHz frequency bands in multiple paths in an indoor lobby environment were analyzed. The line-of-sight (LOS) and non-LOS (NLOS) paths were measured from a distance of 2-16 m (0.5 m intervals) from the transmitting to the receiving antenna positions. For basic transmission losses, three parameters were compared using the floating intercept path loss model corresponding to the path. For a root mean square delay spread, the measurement results were compared for cumulative probabilities of 10, 50, and 90%. Propagation loss and propagation delay occurred in all measured frequencies owing to the existence of pillars and an unusual lobby structure. Thus, a measurement scenario for an indoor lobby environment and the provision of standard measurement data was proposed. The results may facilitate research on the radio propagation characteristics of 5G and millimeter-wave bands in indoor lobby environments with various structures.

Measurement and Analysis of Propagation Characteristics in Curved Subway Tunnel Environments (곡선형 지하철 터널환경에서 전파 특성의 측정과 분석)

  • 정회동;박노준;강영진;송문규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.950-961
    • /
    • 2004
  • In this paper, we measured and analyzed propagation characteristics in a subway tunnel that is recently increasingly becoming one of the radio communication environments. The measurements are carried out in a subway tunnel with frequency bands of 2.45㎓ and 5.8㎓. The length of tunnel we used for this study is 175m of LOS (Line-of-sight) and 270m of NLOS (Non Line-of-Sight). The subway tunnel is curved and its cross section is horseshoe type. The measurement systems we employ in this study are a narrow-band system and a wide-band system. The narrow-band system is used to get path loss measurement and the wide-band system is used to figure out delay profile measurement. In particular, the wide-band system consists of 1023 length PN sequence generator using a chip rate of 80MHz based on a sliding correlation technique. The omni-directional antennas and directional antennas are used to analyze propagation characteristics for beam type of antenna. The path loss displays only pure path loss of a tunnel environment. The delay profile indicates the mean excess delay and RMS (root mean square) delay spread.

The Indoor Propagation Modeling for Indoor Wireless LAN Service (실내 무선 랜 서비스를 위한 실내 전파 모델링)

  • 김진웅;김기홍;윤영중;석재호;임재우;신용섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.426-435
    • /
    • 2002
  • In this paper we present an indoor propagation model for indoor wireless LAN service in the ISM band. We primarily use a 3D ray tracing as well as a patch scattering model in order to take into account the indoor fixtures. Therefore input parameters such as indoor environment parameters and antenna's types, polarizations are considered. As the results, we present fading characteristics and rms delay spread from time delay spread. In order to investigate the accuracy of the presented model, comparisons of predictions with measurement and simulations are performed in indoor wireless LAN service environments. The results show that measurements and simulations are very similar. Therefore in this paper, the effect of presented indoor propagation model is confirmed.

Envelope Correlation of Wideband Signals in Nakagami-Rice Fading Channel (나카가미-라이스 페이딩 채널에서 광대역 신호의 진폭 상관)

  • Park, Byeong-Hoon
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.85-90
    • /
    • 2001
  • In this paper, we analyzed the envelope correlation of wideband signals modulated on two separate subcarriers in a Nakagami-Rice fading channel with exponential power delay profile. The results show that the envelope correlation of resolvable paths is implicated by the ratio of the specular wave power to the mean multipath power as well as the signal bandwidth and the rms delay spread of the multipath waves.

  • PDF

Propagation Measurements of Various Directional Beam in Subway funnel Environments for IEEE 802.11 Wireless LAN (IEEE 802.11 무선랜을 위한 지하철 터널 환경에서 다양한 지향성 빔의 전파측정)

  • 박노준;송문규;강영진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.232-238
    • /
    • 2004
  • In this paper, radio propagation in a subway tunnel is investigated using fan beam antennas, circular polarization antennas and directional antennas at 2.4㎓ and 5.8㎓ band, respectively. The results of narrowband channel measurements show that received power level for NLOS(Non-Line-Of-Sight) path is decreased drastically as compared with LOS(Line-Of-Sight) path. Wideband channel measurements are obtained using a PN sliding correlation method. The parameters of the channel such as mean access delay and RMS delay spread are compared as to different types of directional beam at IEEE 802.11 WLAN(Wireless Local Area Network) band including 2.4㎓ and 5.8㎓ bands, respectively.

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.

Prediction and Measurement of Propagation Path Loss in Underground Environments (지하공간에서의 전파 경로손실의 예측 및 측정)

  • 김영문;진용옥;강명구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.736-742
    • /
    • 2003
  • This paper presents the propagation path loss in a tunnel which is a kinds of underground environments. To predict propagation path loss more accurately, we choose a straight tunnel with rectangular cross-section. The simulated receiver powers that are using a hybrid waveguide model and a Ray-Tracing method, are compared with the measured ones as a function of distance between TX and RX antennas in tunnel. The attenuation value of regression analysis for measured power in the tunnel is 0.0238dB/m which is similar to the one of the EH1.2 mode, 0.0246dB/m in hybrid waveguide model. By comparing simulation with measurement in tunnels, it has been shown that the measured values are approximate to the simulated results of ray-tracing model. In the analysis of wide-band channel characteristics of the tunnel, the more the distance between TX and RX antennas in tunnel increases, RMS delay spread increases and coherence bandwidth decreases.

Performance Evaluation of Channel Shortening Time Domain Equalizer in Wireless LAN Environment (무선랜 환경에서 채널 단축 시간영역 등화기의 성능평가)

  • Yoon Seok-Hyun;Yu Hee-Jung;Lee Il-Gu;Jeon Tae-Hyun;Lee Sok-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.240-248
    • /
    • 2006
  • In this paper, we consider an OFDM receiver algorithm design for IEEE 802.11a/p system, which targeting large coverage area while keeping the transmission format unchanged. Particularly, taking into account the inter-symbol interference(ISI) and inter-carrier interference(ICI) that can be induced with large RMS delay spread, we employ channel shortening time-domain equalizer(TEQ) and evaluate the receiver performance in terms of SINR and packet error rate(PER). The preamble defined in IEEE802.11a/p is used to estimated the initial equalizer tap coefficients. Primary purpose of the paper is to give an answer to the question, though partially, whether or not 16-QAM constellation can be used in none line of sight environment at the boundary of a large coverage area. To this end, we first analyze the required TEQ parameters for the target channel environment and then perform simulation for PER performance evaluation in a generic frequency selective fading channel with exponential power-delay profile.

Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment (6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.