• Title/Summary/Keyword: RMC code

Search Result 9, Processing Time 0.021 seconds

Criticality benchmarking of ENDF/B-VIII.0 and JEFF-3.3 neutron data libraries with RMC code

  • Zheng, Lei;Huang, Shanfang;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1917-1925
    • /
    • 2020
  • New versions of ENDF/B and JEFF data libraries have been released during the past two years with significant updates in the neutron reaction sublibrary and the thermal neutron scattering sublibrary. In order to get a more comprehensive impression of the criticality quality of these two latest neutron data libraries, and to provide reference for the selection of the evaluated nuclear data libraries for the science and engineering applications of the Reactor Monte Carlo code RMC, the criticality benchmarking of the two latest neutron data libraries has been performed. RMC was employed as the computational tools, whose processing capability for the continuous representation ENDF/B-VIII.0 thermal neutron scattering laws was developed. The RMC criticality validation suite consisting of 116 benchmarks was established for the benchmarking work. The latest ACE format data libraries of the neutron reaction and the thermal neutron scattering laws for ENDF/B-VIII.0, ENDF/B-VII.1, and JEFF-3.3 were downloaded from the corresponding official sites. The ENDF/B-VII.0 data library was also employed to provide code-to-code validation for RMC. All the calculations for the four different data libraries were performed by using a parallel version of RMC, and all the calculated standard deviations are lower than 30pcm. Comprehensive analyses including the C/E values with uncertainties, the δk/σ values, and the metrics of χ2 and < |Δ| >, were conducted and presented. The calculated keff eigenvalues based on the four data libraries generally agree well with the benchmark evaluations for most cases. Among the 116 criticality benchmarks, the numbers of the calculated keff eigenvalues which agree with the benchmark evaluations within 3σ interval (with a confidence level of 99.6%) are 107, 109, 112, and 113 for ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3, respectively. The present results indicate that the ENDF/B-VIII.0 neutron data library has a better performance on average.

Fault Current Limitation by a Superconducting Coil with a Reversely Magnetized Core for a Fault Current Controller

  • Ahn, Min Cheol;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.36-40
    • /
    • 2012
  • This paper presents an experimental and numerical study on current limiting characteristics of a fault current controller (FCC). The FCC consists of an AC/DC power converter, a superconducting coil, and a control unit. Even though some previous researches proved that the FCC could adjust the fault current level, the current limiting characteristics by the superconducting coil should be investigated for design of the coil. In this paper, four kinds of model coils were tested; 1) air core, 2) iron core without any bias, 3) reversely magnetized core (RMC) using permanent magnets, and 4) RMC using an electromagnet. Based on a comparative study, it is confirmed that a RMC by an electromagnet (EM) could increase the effective inductance of the coil. In this paper, a numerical code to simulate the HTS coil with RMC was developed. This code can be applied to design the HTS coil with active reversely magnetized bias coil.

One-step Monte Carlo global homogenization based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1209-1217
    • /
    • 2019
  • Due to the limitation of the computers, the conventional homogenization method is based on many assumptions and approximations, and some tough problems such as energy spectrum and boundary condition are faced. To deal with those problems, the Monte Carlo global homogenization is adopted. The Reactor Monte Carlo code RMC is used to study the global homogenization method, and the one-step global homogenization method is proposed. The superimposed mesh geometry is also used to divide the physical models, leading to better geometric flexibility. A set of multigroup homogenization cross sections is online generated for each mesh under the real neutron energy spectrum and boundary condition, the cross sections are adjusted by the superhomogenization method, and no leakage correction is required. During the process of superhomogenization, the author-developed reactor core program NLSP3 is used for global calculation, so the global flux distribution and equivalent homogenization cross sections could be solved simultaneously. Meanwhile, the calculated homogenization cross section could accurately reconstruct the non-homogenization flux distribution and could also be used for fine calculation. This one-step global homogenization method was tested by a PWR assembly and a small reactor model, and the results show the validity.

Neutronics analysis of the ion cyclotron resonance heating antenna of the China Fusion Engineering Test Reactor

  • Gaoxiang Wang;Chengming Qin;Shanliang Zheng;Yongsheng Wang;Kun Xu;Huiqiang Ma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3236-3241
    • /
    • 2024
  • Ion cyclotron resonance heating (ICRH) is an important auxiliary heating method applied to the China Fusion Engineering Test Reactor, which can effectively heat the ions and electrons in plasma. Owing to the harsh nuclear environment, neutronic analyses are required to verify tritium self-sufficiency and neutron-shielding requirements. In this study, a neutronics analysis of the ICRH antenna was conducted using the COre and System integrated engine for Reactor Monte Carlo (cosRMC) code to estimate the neutron flux, radiation damage, nuclear heating, gas generation rate of key components, and tritium breeding ratio (TBR), providing data support for the subsequent optimization of the shielding design. In addition, the neutron flux of the coils around the antenna was calculated to prevent the entry of neutrons that damage the magnetic field coils through the gaps between the port plugs and antenna, and the shielding effects of the port-plug antenna on the surrounding components were analyzed. Finally, the results obtained using the cosRMC and MCNP codes were compared, which and presented good agreement, thus verifying the reliability of the neutronic analysis using the cosRMC code.

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.

Research on the calculation method of sensitivity coefficients of reactor power to material density based on Monte Carlo perturbation theory

  • Wu Wang;Kaiwen Li;Yuchuan Guo;Conglong Jia;Zeguang Li;Kan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4685-4694
    • /
    • 2023
  • The ability to calculate the material density sensitivity coefficients of power with respect to the material density has broad application prospects for accelerating Monte Carlo-Thermal Hydraulics iterations. The second-order material density sensitivity coefficients for the general Monte Carlo score have been derived based on the differential operator sampling method in this paper, and the calculation of the sensitivity coefficients of cell power scores with respect to the material density has been realized in continuous-energy Monte Carlo code RMC. Based on the power-density sensitivity coefficients, the sensitivity coefficients of power scores to some other physical quantities, such as power-boron concentration coefficients and power-temperature coefficients considering only the thermal expansion, were subsequently calculated. The effectiveness of the proposed method is demonstrated in the power-density coefficients problems of the pressurized water reactor (PWR) moderator and the heat pipe reactor (HPR) reflectors. The calculations were carried out using RMC and the ENDF/B-VII.1 neutron nuclear data. It is shown that the calculated sensitivity coefficients can be used to predict the power scores accurately over a wide range of boron concentration of the PWR moderator and a wide range of temperature of HPR reflectors.

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.