• Title/Summary/Keyword: RING zinc finger protein

Search Result 5, Processing Time 0.017 seconds

Molecular characterization of BrRZFPs genes encoding C3HC4 type RING zinc finger protein under abiotic stress from Chinese cabbage (Brassica rapa L.)

  • Jung, Yu Jin;Lee, Kye Dong;Cho, Yong Gu;Nou, Ill Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.102-110
    • /
    • 2013
  • The novel BrRZFPs genes encoding C3HC4-type RING zinc finger protein were identified from FOX (full length cDNA over-expressing) library of Brassica rapa. Ten full-length cDNAs obtained from the library encode zinc-finger protein containing 346 amino acids, designated BrRZFPs. These genes were classified into four groups by phylogenic analysis showing conserved protein sequences at both termini. The tissue distribution of BrRZFPs transcription was examined by qRT-PCR revealing ubiquitous expression pattern. However, each gene was strongly expressed in the specific tissue. Transcriptional analysis showed that those acquired 10 genes were inducible under abiotic stresses. Likewise, the transcript of BrRZFP3 was strongly induced (~12-folds) by exogenous abscisic acid, whereas the transcripts of BrRZFP1, BrRZFP2 and BrRZFP3 were (> 9-folds) induced by cold. We suggest that these BrRZFPs that function as signal or response to abiotic stress are useful for crop improvement.

Enhanced bacterial resistance in transgenic tobacco expressing a BrRZFP1 encoding a C3HC4-type RING zinc finger protein from Brassica rapa

  • Jung, Yu Jin;Nou, Ill Sup;Hong, Sung Kee;Lee, Young Kee;Cho, Yong Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • C3HC4-type RING zinc finger proteins essential in the regulation of plant processes, including responses to abiotic stresses. We previously isolated and examined the C3HC4-type RING zinc finger protein (BrRZFP1) from Brassica rapa under abiotic stresses. To elucidate the role of the BrRZFP1 transcription factor in gene regulation, we transformed tobacco plants with the BrRZFP1 gene. Plants were regenerated from 82 independently transformed callus lines of tobacco and analysed for transgene expression. Transgene integration and expression was confirmed by Southern and RT-PCR analyses, respectively. T2 plants displayed more tolerance to the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum, and the tolerance levels were correlated with BrRZFP1 expression levels. These results suggest that the transcription factor BrRZFP1 is an important determinant of stress response in plants and its overexpression in plants could increase biotic stress resistance.

Characterization of Oszinc626, knock-out in zinc finger RING-H2 protein gene, in Ac/Ds mutant lines of rice(Oryza sativar L.) (Zinc finger RING-H2 protein관련 Ac/Ds전이인자 삽입 변이체 Oszinc626 유전자의 특성 분석)

  • Park, Seul-Ah;Jung, Yu-Jin;Ahn, Byung-Ohg;Yun, Doh-Won;Ji, Hyeon-So;Park, Yong-Hwan;Eun, Moo-Young;Suh, Seok-Cheol;Lee, Soon-Youl;Lee, Myung-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Ac/Ds mutant lines of this study were transgenic rice plants, each of which harbored the maize transposable element Ds together with a GUS coding sequence under the control of a promoterless(Ds-GUS). We selected the mutants that were GUS expressed lines, because the GUS positive lines will be useful for identifying gene function in rice. One of these mutants was identified knock-out at Oszinc626(NP_001049991) gene, encoding a RING-H2 zinc-finger protein, by Ds insertion. In this mutant, while primary root development is normal, secondary root development from lateral root was very poor and seed development was incomplete compare with normal plant. RING zinc-finger proteins play important roles in the regulation of development in a variety of organisms. In the plant kingdom, a few genes encoding RING zinc-finger proteins have been documented with visible effects on plant growth and development. The consensus of the RING-H2(C3-H2-C3 type) domain for this group of protein is $Cys-X_2-Cys-X_{28}-Cys-X-His-X_2-His-X_2-Cys-X_{14}-Cys-X_2-Cys$. Oszinc626 encodes a predicted protein product of 445 amino acids residues with a molecular mass of 49 kDa, with a RING-zinc-finger motif located at the extreme end of the C-terminus. RT-PCR analysis indicated that the expression of Oszinc626 gene was induced by IAA, cold, dehydration, high-salinity and abscisic acid, but not by 2,4-D, and the transcription of Oszinc626 gene accumulated primarily in rice immature seeds, root meristem and shoots. The gene accumulation patterns were corresponded with GUS expression.

Cloning and Expression Analysis of a Novel Mouse Zinc Finger Protein Gene Znf313 Abundantly Expressed in Testis

  • Li, Na;Sun, Huaqin;Wu, Qiaqing;Tao, Dachang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.270-276
    • /
    • 2007
  • We have cloned a novel mouse zinc finger protein gene Znf313 by rapid amplification of cDNA ends (RACE) according to the homologue of human ZNF313 gene. The cDNA is 2,163 base pairs (bp) in length and encodes a 229 amino acids (aa) protein with a $C_3HC_4$ ring finger domain and three $C_2H_2$ domains. 89% and 93% nucleotide (nt) and aa sequence identity is observed with its human homologue. Revealed by Northern blot and RT-PCR, full mRNA consists of 2.16 kb and widely expresses in tissues as a single transcript, most abundantly in heart, liver, kidney and testis. The expression of Znf313 in testis is detected in all development stages. Western blot analysis also reveals that Znf313 is expressed in the tissues. Immunohistochemical staining and subcellular localization demonstrate that Znf313 is expressed both in the cytoplasm and nucleus whereas predominantly localized in the nucleus. Present data suggests that Znf313 gene might play a fundamental role in gene transcription and regulation in organism and relates to spermatogenesis.

Changing Proteins in Granulosa Cells during Follicular Development in Pig (돼지 난포 발달 시 과립막 세포에서 발현되는 단백질의 변화)

  • Chae, In-Soon;Jang, Dong-Min;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.183-187
    • /
    • 2009
  • This study analyzed change of proteins in granulosa cells during the porcine follicuar development by proteomics techniques. Granulosa cells of the follicles, of which the diameter is $2{\sim}4\;mm$ and $6{\sim}10\;mm$, were collected from ovary of slaughtered pig that each follicle of diameter $1{\sim}4\;mm$ and $6{\sim}10\;mm$. We extracted glanulosa cell proteins by M-PER Mammalian Protein Extraction Reagent. Proteins were refined by clean-up kit and quantified by Bradford method until total protein was $200{\mu}l$. Immobilized pH gradient(IPG) strip used 18 cm, $3{\sim}10\;NL$. SDS-PAGE used 10% acrylamide gel. After silver staining, Melanie 7 and naked eye test were used for spot analyzation. Increasing proteins in glanulosa cell of $6{\sim}10\;mm$ follicle were 7 spots. This spots were analyzed by MALDI-TOF MS and searched on NCBInr. In results, 7 spots were similar to zinc/ling finger protein 3 precursor (RING finger protein 203), angiomotin, heat shock 60 kDa protein 1 (chaperonin) isoform 1 (HSP60), similar to transducin-like enhancer protein 1 (TLE 1), SH3 and PX domains 2A (SH3PXD2A). Those proteins were related with transfer between cells. Increase of proteins has an effect on follicular development.