• 제목/요약/키워드: RIL population

검색결과 33건 처리시간 0.026초

SSR 분자표지이용 콩 불마름병 저항성 관여 양적형질 유전자좌(QTL) 분석 (Identification of Quantitative Trait Loci Associated with Resistance to Bacterial Pustule (Xanthomonas axonopodis pv. glycines) in Soybean)

  • 서민정;강성택;문중경;이석기;김율호;정광호;윤홍태
    • 한국육종학회지
    • /
    • 제41권4호
    • /
    • pp.456-462
    • /
    • 2009
  • 본 연구는 최근 우리나라에서 급격하게 발생되고 있는 콩 불마름병에 대한 저항성 중간모본을 육성하고자 할 때 marker-assisted selection에 적용할 수 있는 저항성 근접 분자표지를 개발하고자 수행하였다. 1. 불마름병에 이병성인 큰올콩과 저항성인 신팔달콩의 RIL 116 계통에 대하여 콩 불마름병 균주 8ra에 대한 저항성과 연관된 QTL을 탐색한 결과 포장에서는 연관군 B2, D2, I와 K에서, 온실에서는 연관군 D2, C1과 F에서 불마름병과 관련된 QTL이 나타났다. 2. 포장과 온실에서 공통적으로 탐색된 QTL은 연관군 D2에 위치해 있었는데 정확한 위치는 포장과 온실에서 각각 Satt135와 Satt397의 사이에서 LOD score 6.64와 3.43으로 Satt135에서 14.01 cM과 0.01 cM 떨어진 위치에서 탐색되었다.

Identification of the quantitative trait loci (QTL) for seed protein and oil content in soybean.

  • Jeong, Namhee;Park, Soo-Kwon;Ok, Hyun-Choong;Kim, Dool-Yi;Kim, Jae-Hyun;Choi, Man-Soo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.148-148
    • /
    • 2017
  • Soybean is an important economical resource of protein and oil for human and animals. The genetic basis of seed protein and oil content has been separately characterized in soybean. However, the genetic relationship between seed protein and oil content remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation and linkage mapping to dissect the relationship between seed protein and oil content. A $F_{10:11}$ RIL population containing 222 lines, derived from the cross between two Korean soybean cultivars Seadanbaek as female and Neulchan as male parent, were used in this experiment. Soybean seed analyzed were harvested in three different experimental environments. A genetic linkage map was constructed with 180K SoyaSNP Chip and QTLs of both traits were analyzed using the software QTL IciMapping. QTL analyses for seed protein and oil content were conducted by composite interval mapping across a genome wide genetic map. This study detected four major QTL for oil content located in chromosome 10, 13, 15 and 16 that explained 13.2-19.8% of the phenotypic variation. In addition, 3 major QTL for protein content were detected in chromosome 10, 11 and 16 that explained 40.8~53.2% of the phenotypic variation. A major QTLs was found to be associated with both seed protein and oil content. A major QTL were mapped to soybean chromosomes 16, which were designated qHPO16. These loci have not been previously reported. Our results reveal a signi cant genetic relationship between seed protein and oil fi content traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved seed protein and oil content.

  • PDF

Identification of Subspecies-specific STS Markers and Their Association with Segregation Distortion in Rice(Oryza sativa L.)

  • Chin, Joong-Hyoun;Kim, Jung-Hee;Jiang, Wenzhu;Chu, Sang-Ho;Woo, Mi-Ok;Han, Longzhi;Brar, Darshan;Koh, Hee-Jong
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.175-184
    • /
    • 2007
  • Two subspecies, japonica and indica, have been reported in rice, which differ in several ecotypic traits. However, reproductive barriers in hybrid progenies between subspecies have been major obstacles in breeding programs using inter-subspecific hybridization. As the first step to elucidate the reproductive barriers, we developed subspecies-specific(SS) STS markers in this study. A total of 765 STS primers were designed through comparing DNA sequences at every $2{\sim}3$cM interval between japonica and indica rices, which are available at Web DBs such as IRGSP, NCBI, TIGR, and GRAMENE, and tested for subspecies-specificity using 15 indica and 15 japonica varieties of diverse origin. Of them, 67 STS markers were identified as SS STS markers and their subspecies-specificity scores were estimated. The SS markers were dispersed throughout the genome along chromosomes. Of them, 64 SS markers were mapped on an RIL population derived from a Dasanbyeo(indica)/TR22183(japonica) cross. Genomic inclination of RILs was evaluated based on the genotyping with different types of markers. Association test between markers and segregation distortion revealed that segregation distortion might not be the cause of generating SS markers. The SS markers will be applicable to estimate the genomic inclination of varieties or lines and to study the differentiation of indica and japonica, and ultimately to breed true hybrid rice varieties in which desirable characters from both subspecies are recombined.

  • PDF

Mapping of Quantitative Trait Loci Associated with Viviparous Germination in Rice

  • Lee, Seung-Yeob;Ahn, Jeong-Ho;Cha, Young-Soon;Yun, Doh-Won;Lee, Myung-Cheol;Eun, Moo-Young
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.565-570
    • /
    • 2006
  • The viviparous germination (VG) with lodging caused the yield reduction and quality deterioration in rice. We carried out the evaluation of VG tolerance (on the 40th day after heading) and mapping QTLs associated with VG tolerance using the recombinant inbred lines (M/G RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). The VG rates of Milyang 23 and Gihobyeo were 0.0 and 7.0%, respectively. The averaged VG rate of 162 M/G RILs was 7.7%, and their range was from 0.0 to 50.9%. Of the 162 RILs, 144 lines were tolerant less than 10%, and 18 lines were susceptible more than 10%. Using the M/G RIL Map, three QTLs associated with the viviparous trait were detected on chromosome 2 (qVG 2-1 and qVG 2-2) and 8 (qVG 8). qVG 2-1 was linked to RM 32D and RZ 166, and had LOD score of 2.97. qVG 2-2 was tightly linked to E13M59.119-Pl and E13M59.M003-P2, and showed higher LOD score of 3.41. qVG 8 was linked to RM33 and TCT116, and had LOD score of 2.67. The total phenotypic variance explained by the three QTLs was about 24.4% of the total variance in the population. The detection of new QTLs associated with VG tolerance will provide important informations for the seed dormancy, low temperature germination, or comparative genetics.

Inheritance of Agronomic Traits and Their Interrelationship in Mungbean(Vigna radiata(L.) Wilczek)

  • Sriphadet, Sukhumaporn;Lambrides, Christopher J.;Srinives, Peerasak
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.249-256
    • /
    • 2007
  • A study was conducted to observe the variation and inheritance of agronomic traits and their interrelationship in mungbean. The objective of the study was to compare agronomic traits and hardseed percentage of 268 recombinant inbred lines(RILs) developed from the cross between wild Vigna subspecies sublobata "ACC 41" with the mungbean cultivar "Berken". The RIL population and their parents were evaluated under controlled conditions in a glass house at the University of Queensland, Brisbane, Australia. The results showed significant differences among the RILs and among the parents in all traits under study. Berken had a longer flowering date and a higher seed weight per plant, but less total leaf number and pod number per plant than ACC 41. A germination test between papers revealed that ACC 41 was 100% hard-seeded and did not germinate at all, while Berken germinated up to 100%. Their RILs distributed well between 0 to 100% hardseed. Upon scarification, all hardseed germinated within seven days. Narrowsense heritability estimates of total leave number, hardseedness, pod length, and pod width were highly heritable at 89.9, 98.9, 93.7, and 93.2%, respectively. The heritability of seed weight per plant and number of seeds per plant were lower at 63.1 and 58.4%, respectively. Seed weight per plant showed positive transgressive segregation when compared with ACC 41 and a positive correlation with 100 seed weight. While the number of seeds per pod showed a negative transgressive segregation when compared with Berken and a negative correlation with pod length and pod width. The RILs gave a 1:1 segregation ratio in leaflet shape, growth habit, and growth pattern, indicating that these traits were controlled by a single dominant gene.

  • PDF

Identification of a Novel Bakanae Disease Resistance QTL in Zenith Cultivar Rice (Oryza sativa L.)

  • Sais-Beul Lee;Jun-Hyun Cho;Nkulu Rolly Kabange;Sumin Jo;Ji-Yoon Lee;Yeongho Kwon;Ju-Won Kang;Dongjin Shin;Jong-Hee Lee;You-Cheon Song;Jong-Min Ko;Dong-Soo Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.64-64
    • /
    • 2020
  • Bakanae disease, caused by several Fusarium species, imposes serious limitations to the productivity of rice across the globe. The incidence of this disease has been shown to increase, particularly in major rice-growing countries. Thus, the use of high resistant rice cultivars offers a comparative advantage, such as being cost effective, and could be preferred to the use of fungicides. In this research, we used a tropical japonica rice variety, Zenith, a bakanae disease resistant line selected as donor parent. A RIL population (F8:9) composed of 180 lines generated from a cross between Ilpum and Zenith was used. In primary mapping, a QTL was detected on the short arm of chromosome 1, covering about 3.5 Mb region flanked by RM1331 and RM3530 markers. The resistance QTL, qBK1Z, explained about 30.93% of the total phenotype variation (PVE, logarith of the odds (LOD) of 13.43). Location of qBK1Z was further narrowed down to 730 kb through fine mapping using additional RM markers, including those previously reported and developed by Sid markers. Furthermore, there is a growing need to improving resistance to bakanae disease and promoting breeding efficiency using MAS from qBK1Z region. The new QTL, qBK1Z, developed by the current study is expected to be used as foundation to promoting breeding efficiency with an enhanced resistance against bakanae disease. Moreover, this study provides useful information for developing resistant rice lines carrying single or multiple major QTLs using gene pyramiding approach and marker-assisted breeding.

  • PDF

두 집단의 재조합 근친교잡 계통 (RIL) 콩에서 엽장과 엽폭 및 장폭비와 관련된 양적헝질 유전자좌 분석 (Identification of Quantitative Trait Loci Associated with Leaf Length. Width and Length/width Ratio in Two Recombinant Inbred Lines of Soybean (Glycine max L.))

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg
    • 생명과학회지
    • /
    • 제14권5호
    • /
    • pp.821-828
    • /
    • 2004
  • 엽면적과 엽장 및 엽폭은 식물의 광합성 효율과 관련이 있다. 단위 엽면적당 광합성율을 증가는 콩에서 종실 수량을 증가시킨다 따라서 본 연구는 큰올콩과 신팔달콩 및 익산10호를 각각 교배하여 얻은 두 집단이 잎의 엽장과 엽폭 및 장폭비를 확인할 수 있는 SSR 마커를 선발하기 위하여 실시하였다. 잎의 장폭비는 두 집단에서 엽폭과 유의적인 부의 상관을 보였다. 엽장은 큰올콩/신팔달롱 조합에서 연관군 DIb+W와 L에서 두개의 작은 양적 형 질 유전자좌 (QTL)를 탐색하였으며, 큰올콩/익산10호 조합에서는 연관군 1와 L에서 두개 의 양적 형 질 유전자좌가 관련하였다. 엽폭은 큰올콩/신팔달콩 조합에서 2개, 큰올콩/익산10호 조합에서 3개의 양적형질 유전자좌가 관련하였으며 이들은 각각 전체 형질 변이의 13% 및 18.04%를 설명할 수 있었다. 장폭비는 큰올콩/신팔달콩 조합에서 연관군 I와 L에서 2개, 큰올콩/익산10호 조합에서 연관군 Cl과 E 및 L에서 3개의 양적형질 유전자좌가 관련하였다.

조기재배 적합 벼품종 육성을 위한 재조합집단에서 완전미율과 농업형질과의 상관분석 (Correlation Analysis between Head Rice Ratio and Agronomic Traits in RILs for Developing A Promising Rice Culitivar Adaptable to The Early-Transplanting Cultivation)

  • 이종희;조준현;김상열;이지윤;김춘송;여운상;송유천;손영보;오명규;강항원;남민희
    • 한국작물학회지
    • /
    • 제57권1호
    • /
    • pp.1-6
    • /
    • 2012
  • 평야지 조기재배에 적합한 신품종 육성을 위해 풍미와 고시히까리가 교배된 재조합 집단내에서 주요 농업적 형질을 비교하여 완전미율에 미치는 주요 요인을 확인하고자 수행한 결과는 다음과 같다. 재조합 집단의 주요 농업적 형질의 변이는 분석한 결과 간장은 51.0~97.0 cm, 아밀로스 함량은 14.0~20.1%, 단백질 함량은 5.2~7.4% 및 쌀가루 호화 특성인 최고점도는 -227.2~309.8 RVU이며, 완전미율은 67.7~96.7% 등으로 분포하였다. 주요 형질과 상관분석을 수행한 결과 완전미율과 간장은 정의상관(0.443)을 보였으며, 단백질함량과는 부의상관(-0.458)을 나타내었다. 평야지 조기재배에 적합한 고품질 품종개발을 위해서는 포장에서는 간장, 단백질 함량 및 완전미율 등 주요 농업적 특성을 고려하여 선발할 필요가 있다.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

MITE-AFLP를 이용한 자포니카 벼의 다양성 검정 (Diversity Analysis of Japonica Rice using MITE-transposon Display)

  • 홍성미;권수진;오창식;;안상낙
    • 한국작물학회지
    • /
    • 제51권3호
    • /
    • pp.259-268
    • /
    • 2006
  • 1. 자포니카 벼 114 계통에 대해 다양성과 근연관계를 확인하고자 MITE 중에서 mPing family를 이용하여 MITE-TD 기법으로 분석하여 품종간의 다양성 정도를 산출한 결과 마커들의 PIC 값이 $0.293{\sim}0.499$ 범위로 나타났다. 2. 두 개의 mPing primer와 selective primer인 BfaI+G 와 BfaI+C의 조합을 이용하였을 때, 공시계통인 114개의 자포니카 벼 전체를 구분할 수 있었다. 3. NTSYS-pc를 이용한 근연관계 분석 결과, 유사계수의 범위는 0.802에서 부터 0.081까지였고, 자포니카 벼 114 품종은 크게 5 개의 그룹으로 분류되었다. 4. 8 개의 MITE-AFLP marker 연관분석을 밀양 23호/합천앵미 3호 조합 RIL을 이용하여 실시한 결과, 이들은 염색체 l번, 2번, 4번, 5번, 7번 그리고 9번에 각각 위치함을 확인하였다.