• 제목/요약/키워드: RICEM

검색결과 8건 처리시간 0.021초

리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석 (Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System)

  • 이제홍;김강문;정대용;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

점화시기 근방의 고난류 생성을 위한 기초연구 (The Fundamental Study on Generation of High Turbulence at Vicinity of Ignition Timing)

  • 홍재웅;송영식
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.275-283
    • /
    • 1996
  • The turbulence in the engine cylinder is generated by intake pressure and inertia effects during intake stroke, and is generated and decreased by piston compression effect during the compression stroke. The classified needed to generate high turbulence flow at vicinity of ignition timing. Therefore, A single-shot Rapid Intake Compression Expansion Machine (RICEM), which is able to realize the intake, compression, expansion or intake-compression stroke under high piston speed respectively, was manufactured and evaluated in order to find methods to generate high turbulence at around spark timing. It was found that the characteristics of RICEM such as reapperance, leakage, piston displacement with crank angle was corresponding to those of real engine and RICEM simulates not only high temperature and high pressure field but also flow patterns of the actual engine by increasing of pressure in intake line.

흡입공기량 및 유호압축비 보상시 흡입밸브닫힘시기 변화에 의한 고팽창효과 (A High Expansion Effects of Atkinson Cycle by adopting Variable Intake Valve Closing Timing with Compensated Intake Air-mass and Effective Compression Ratio.)

  • 정양주;김윤영;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1698-1703
    • /
    • 2004
  • To understand the high expansion effects by adopting intake closing time in the cases of compensating intake air-mass and effective compression ratio simultaneously, fundamental study was carried out by using RICEM realizing Atkinson cycle. Intake air-mass and effective compression ratio were compensated by increasing supercharged pressure and geometric compression ratio. The results showed that the increasing rates of expansion ratio and expansion-compression ratio were increased by compensating both a intake air-mass and effective compression ratio the same tendencies were obtained with the increases of compression ratio and cut off ratio It was also found that LIVC has more advantages in expansion ratio and effective work than those of EIVC under above conditions.

  • PDF

프리피스톤 수소기관의 역화 및 이상연소에 관한 연구 (A Study on the Backfire and Abnormal Combustion in the Free-piston Hydrogen Fueled Engine)

  • 김강문;박상욱;이제홍;노기철;이종태;이용균
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2006
  • The free-piston hydrogen fueled engine is estimated as the next generation power system which can obtain high efficiency and low emission, simultaneously. In order to develop the free-piston hydrogen fueled engine, it is necessary to stable the combustion. The engine combustion, backfire and knock phenomenons were studied by using RICEM for researching combustion characteristics of free-piston engine. As the results, backfire occurrence was not observed in the free-piston engine under limited experimental condition. And knocking occurred in case of higher cylinder wall temperature.

프리피스톤 수소기관의 연소안정화 및 성능향상에 관한 연구 (A Study on the Combustion Stabilization and Performance Improvement in the Free-piston Hydrogen Fueled Engine)

  • 노기철;윤재성;김강문;박상욱;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.227-233
    • /
    • 2006
  • A free-piston hydrogen fueled engine is considered as one of the next power systems which is able to obtain high efficiency and low emission, simultaneously. In this study, in order to ensure the possibility as the next generation power system, the combustion characteristics and the performance of the free-piston hydrogen fueled engine are analyzed by using the linear RICEM for the change of injection pressure and equivalence ratio. As the results, in-cylinder maximum pressure is shown at injection pressure $P_{inj}$=6bar. Backfire phenomenon is not observed under experimental condition and knock occurs over ${\Phi}=0.8$. The thermal efficiency is the highest at injection pressure, $P_{inj}$=6bar and equivalence ratio, ${\Phi}=0.7$, respectively.

광흡수법을 이용한 LPG 연료의 증발특성 및 연료 농도 분포에 관한 연구 (A Study on Evaporation Characteristics and Concentration Distribution of LPG fuel using Light Extinction Method)

  • 김대근;조규백;오승묵;최교남;정동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.708-714
    • /
    • 2001
  • Although LP gas has lots of advantages, there has been limitation in application for automotive engine due to the several disadvantages, such as power decrease, complex fuel supply unit, and back fire etc. However LP gas direct injection engine has possibility to solve the problems above mentioned. LEM(Light Extinction Method) was employed for analysis of spacial and temporal distribution of LP gas which is directly injected into combustion chamber under various pressure and temperature conditions. The results from CVC(Constant Volume Chamber) were compared to those of RICEM(Rapid Induction, Compression and Expansion Machine) which simulate early- and late injection of direct injection engine. LPG fuel spray is affected by temperature and pressure in evaporation characteristics but it is more benefit to direct injection engine in every way such as, fuel distribution, evaporating speed and well wetting reduction.

  • PDF

Uni-flow 소기방식 2행정 프리피스톤 수소기관의 스트로크변화에 따른 역화 특성 (The Characteristics of Backfire for 2 stroke Free-Piston Hydrogen Fueled Engine with Uni-flow Scavenging)

  • 조관연;조형욱;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.371-377
    • /
    • 2009
  • Backfire characteristics for hydrogen fueled free piston engine with uni-flow scavenging is investigated with different stroke, exhaust vlave openning timing and fuel-air equivalence ratio by using RICEM (Rapid Intake Compression Expansion Machine) for combustion research of free piston engine. As results, it is found that backfire can be occurred due to slow combustion of unhomogeneous mixture in the piston crevice volume or/and in the cylinder near piston head. And the more stroke of free piston H2 engine with uni-flow scavenging is short the more opening timing of exhaust valve have to be advanced to control backfire.

Reverse uni-flow 소기방식을 갖는 2행정 프리피스톤 수소기관의 역화 현상에 관한 연구 (The Characteristics of Backfire for a Free-Piston Hydrogen Fueled Engine with Reverse Uni-flow Scavenging)

  • 변창희;조관연;백대하;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.98-103
    • /
    • 2010
  • In order to develop two-stroke free-piston hydrogen engine to obtain high thermal efficiency and low emission, backfire occurrence have to be prevented. In this research, backfire characteristics are analyzed as functions of the intake valve opening timing and compression chamber pressure under piston by using RICEM (Rapid Intake Compression Expansion Machine) that has reverse uni-flow scavenging. As the result, reverse uni-flow scavenging is advantage about back fire. but, it exists suitable intake valve opening timing and its timing become known that equivalence ratio 1 retard until the piston rises. Also, To rise chamber pressure of lower piston, this does not cause backfire occurs in equivalent ratio 0.6 observed back fire. Therefore, 2cycle hydrogen fueled free-piston engine is undesirable scavenging compression by compressing the piston.