• Title/Summary/Keyword: RHEED

Search Result 132, Processing Time 0.025 seconds

C.C.D Camera를 이용한 RHEED Intensity Oscillation 측정

  • 김재훈;민항기;김재성
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.122-123
    • /
    • 1994
  • RHEED ppattern을 C.C.D Camera를 이용하여 관측한 후 C.C.D outpput signal을 Frame Garbber를 이용하여 Digitize하였다. Digitize된 RHEED ppattern의 정보로부터 원하는 Sppot의 intensity를 Image pprocessing Software를 개발하여 측정할 수 있다. [그림 1] 특히 thin film growth를 monitor하기 위하여 RHEED diffraction Sppot의 Intensity oscillation을 측정할 경우 실시간 측정이 필요하며 이를 위해 매우 빠른 속도의 data aquisition과 dispplay를 필요로 한다. 그림2는 이런 조건을 만족하는 software를 개발하여 실시간으로 측정한 AlGaAs/GaAs. multilayer RHEED Oscillation을 보여주고 있다. 이 실험은 매우 간단하고, 특별한 주의를 요하지 않으며, 측정되는 RHEED Sppot을 눈으로 동시에 관찰할 수 있어 실험 상황을 좀더 쉽게 monitor할 수 있게 해준다. 또한 data-aquitition. data-analysis, data-dispplay를 한 대의 compputer를 이용해 손쉽고 값싸게 할 수 있으므로, opptical fiber와 pphoto-diode, X-Y recorder등을 동원한 기존의 번잡한 실험을 대체할 수 있을 것이다.

  • PDF

The Study of Si(111)-Sn Surface by Variation of RHEED Spot Intensity (RHEED 반점의 강도변화를 이용한 Si(111)-Sn 표면조사)

  • 곽호원;이의완
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.2
    • /
    • pp.186-189
    • /
    • 1994
  • Si(111)-7x7 표면에 Sn을 증착시킬 때 기판온도와 증착량에 따른 표면구조의 변화를 RHEED상 (pattern)과 RHEED상의 회절반점(spot) 강도변화를 관찰하여 조사하였다. Si(111) 기판오도를 $ 400^{\circ}C$로 유지하면서 Sn을 증착시킬 때{{{{ SQRT { 3}$\times$ SQRT { 3} 구조가 관찰되었으며 기판온도 $200^{\circ}C$ 이하에서는 증착량에 따라 {{{{ SQRT { 3}$\times$ SQRT { 3} }}, {{{{2 SQRT { 3} $\times$2 SQRT { 3} }}, 구조들이 관찰되었다. RHEED 반점의 강도변화를 이용하여 Si(111)-Sn {{{{ SQRT { 3}$\times$ SQRT { 3} 서의 Sndnjs자의 이탈과정을 조사한 결과 이탈에너지는 $3.3pm$0.1 eV로 조사되었다.

  • PDF

Construction of RHEED Apparatus and Study on K, Cs/Si)(111) System (RHEED 장치의 제작과 K, Cs/Si(111)계에 관한 연구)

  • 이경원;안기석;강건아;박종윤;이순보
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1992
  • RHEED apparatus which is one of the systems of surface structure analysis has been constructed.Electron beam is focused by means of magnetic lens, and the beam divergence is about $1{\times}10^{-3}$ rad. The Acceleration voltage of this RHEED apparatus is continuously variable from 0 to 20 kV. K and Cs-adsorbed structureson Si(111)$7{\times}7$ surface at room and high temperatures($200{\times}700^{\circ}C$) have been investigated by RHEED. It is observed that the K and Cs-adsorbed Si(111)surface structures at saturation coverage are Si(111)$7{\tiems}7-K$ and Si(111)$1{\tiems}1-Cs$ at room temperature, respectively. When the specimen temperature was elevated during evaporation,the $3{\times}1$ structure appears in the range of temperature between $300^{\circ}C$ and $550^{\circ}C$, and the $1{\tiems}1$ structure appears above $550^{\circ}C$ in K/Si(111)system. Also, in Cs/Si(111) system the $\sqrt{3}{\times}\sqrt{3}$ structure appears at $300^{\circ}C$, and the $\sqrt{3}{\times}\sqrt{3}+3{\times}1$ structure appears between $350^{\circ}C$ and $400^{\circ}C$.

  • PDF

A Study of Epitaxial Growth on the Surfactant(Sn) Adsorbed Surface of Ge(111) (RHEED를 이용한 Ge(111)표면의 층상성장에서 Sn의 영향)

  • Kwak, Ho-Weon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.451-455
    • /
    • 2001
  • The epitaxial growth of Ge on the clean and surfactant(Sn) adsorbed surface of Ge(111) was studied by the intensity oscillation of a RHEED specular spot. In the case of epitaxial growth without the adsorbed surfactant, the RHEED intensity oscillation was stable and periodic up to 24ML at the substrate temperature of $200^{\circ}C$. Therefore the optimum temperature for the epitaxial growth of Ge on clean Ge(111) seems to be $200^{\circ}C$. However, in the case of epitaxial growth with the adsorbed surfactant, the irregular oscillations are observed in the early stage of the growth. The RHEED intensity oscillation was very stable and periodic up to 38ML, and the $d2{\times}2$ structure was not charged with continued adsorption of Ge at the substrate temperature of $200^{\circ}C$. These results may be explained by the fact that the diffusion length of Ge atoms is increased by decreasing the activation energy of the Ge surface diffusion, resulted by segregation of Sn toward the growing surface. From the desorption process, the desorption energy of Sn in Ge $\sqrt{5}{\times}\sqrt{5}$ structure is observed to be 3.28eV.

  • PDF

GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns (As과 Ga 빔 조사에 의해 세척된 Si(100) 기판 위에 GaAs 에피층 성장과 RHEED 패턴)

  • Yim, Kwang-Gug;Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.170-175
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of $800^{\circ}C$. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and 1 ${\mu}m$, respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at $800^{\circ}C$ shows double domain ($2{\times}1$). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, ($2{\times}4$) with spot, and clear ($2{\times}4$). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.

The study of In/Si(111) surface by variation of RHEED spot intensity (RHEED회절점의 강도변화에 따른 In/Si(111)에 대한 연구)

  • 곽호원;이의완;박동수;이운환
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.172-176
    • /
    • 1997
  • The change of surface structures for the deposition of indium on clean Si(111) surface is investigated as a function of substrate temperature and surface coverage by RHEED. We find that at substrate temperature of $400^{\circ}C$, $\sqrt{3}\times\sqrt{3},\sqrt{31}\times\sqrt{31},4\times 1$ structures are formed at indium coverages of 0.2, 0.3 and 0.5 ML, respectively. We also find that for the substrate temperature of $300^{\circ}C$, 4$\times$1 structure starts to be forme by 0.2 ML of indium, and the mixed structure of 4$\times$1 and $\sqrt{3}\times\sqrt{3}$is observed for more than 1.0 ML. On the other hand, if the indium is deposited on the Si(111)-$\sqrt{3}\times\sqrt{3}$ structure at room temperature, $2\times2\; and\;\sqrt{7}\times\sqrt{3}$ structures are found to form at 0.2 and 0.4 ML, respectovely. From the desorption process, the desorption energy of indium in Si $\sqrt{7}\times\sqrt{3}$ structure is observed to be 2.84 eV.

  • PDF

The study of Si(111)Au surface by variation of RHEED spot intensity (Rheed 반점강도의 변화를 이용한 Si(111)-Ad 표면조사)

  • Kwak, Ho-Weon;Lee, Eui-Wan;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.638-643
    • /
    • 1994
  • The Si(ll1) surface structures induced by deposition of Au atoms were investigated by RHEED system. When Au atoms were deposited on the Si(ll1) $7\times7$ surfade, the dependence of structures and phases on the substrate temperatures and coverages was drastic. For O.1ML to 0.4ML of coverage the $7\times7$ structure changes to $7\times7$ + $5\times2$ structure as temperature increases to $350^{\circ}C$-$750^{\circ}C$. Between 0.4M1 to 1.OML the phase changed to $5 \times 2,\alpha- \sqrt{3} \times \sqrt{3},\beta- \sqrt{3} \times \sqrt{3}$ structure according to the substrate temperature and coverages. When the coverages exceeds O.SML, the 6 x 6 structure appears at the substrate temperature range between $270^{\circ}C$-$370^{\circ}C$ and compeletely transforms to 6 x6 at 1,OML. The isothermal desorption of Au on Si(ll1) surface investigated by using AES in the $\alpha- \sqrt{3} \times \sqrt{3},5 \times 2$ structures shows that the desorption energys of $\alpha- \sqrt{3} \times \sqrt{3}$ and 5 x 2 were 79Kcal/mol and 82 Kcal/mol respectively.

  • PDF

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

Single Crystal Growing of Gallium Nitride Films on (0001), (10${\bar{1}}$2) and(11${\bar{2}}$0) Sappire ((0001), (10${\bar{1}}$2)와 (11${\bar{2}}$0) Sapphire 기판에서 Gallium Nitribe 단결정 박막의 성장)

  • 황진수;알렉산
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.24-32
    • /
    • 1994
  • The study of (0001), (1120) and (1011) GAN epitaxy films grown on the (0001),(1012) and (1120) α-Al2O3 substrates have been investigated using the haliar vapor phaes epitaxy(HVPE) method in Ga/HCI/NH3/He system. XRD, RHEED and SEM are used for the study of the films struction and surface morphology. Chemical composition of the film surface is estimsted by XPS. The following orientation relationships are observed; (0001) GaN /(0001) Al2O3 (1120) GaN/ (1012) Al2O3 and (0001) and (1011) GaN/ (1120) Al2O3 in accordance with growth conditions. The (0001) GaN films grown on(0001) and (1120) a-Al2O3 substrates at higer temperature(1050℃) have shown two dimensional grownth mechanism. Form SEM and RHEED, the smoother surface morphology and better structure are observed for the (1011) GaN films grown on (1120) sapphire at higer temperature.

  • PDF