• 제목/요약/키워드: RGBD 카메라

검색결과 6건 처리시간 0.023초

RGBD 카메라를 이용한 실내에서의 물체 검출 알고리즘 (Indoor object detection method using a RGBD image)

  • 허선;이상화;김명식;한승범;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.100-103
    • /
    • 2015
  • 본 논문에서는 실내에서 RGBD 영상을 이용하여 물체를 검출하는 방법을 제안한다. 특정 물체가 아닌 일반적인 여러 가지 물체에 대한 특징을 규정하기 어려우므로 본 논문에서는 영상 정보에 의존하기 보다 물체와 픽셀의 기하학적 구조에 기반하여 물체를 검출한다. 우선 컬러 정보를 이용하여 대략적인 영상 영역분할을 하고 이를 같은 레이블로 분류하여 물체와 배경의 후보를 얻는다. 대체로 실내 환경에서 바닥은 평면이라 가정할 수 있으므로 바닥의 평면 모델을 만들어서 물체 후보에서 이를 제외시킨다. 또한, 물체에 대한 간단한 가정을 통해 바닥 이외의 배경 역시 물체와 구분하여서 물체 후보들을 가려낸다. 최종적으로 3 차원 공간에서 가까이 위치하는 레이블을 하나로 통합하는 과정을 통해 최종적인 물체 영역을 검출하고 이를 bounding box 로 표시한다. 직접 촬영한 몇몇 실내 RGBD 영상에서 실험한 결과, 제안하는 방법이 기존 방법들에 비해 물체 검출 성능이 좋은 것을 확인하였다.

  • PDF

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.

RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정 (A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors)

  • 이주호;조정원
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.319-324
    • /
    • 2016
  • 실내에서 카메라를 이용한 로봇 응용이나 가상현실(Virtual Reality) 응용의 경우 평면을 찾고 추정하는 기술은 매우 중요한 기술이다. RGB-D 카메라의 경우 실내의 평면에서 질감 정보가 없는 평면에서도 3차원 관측 데이터를 얻을 수 있지만, 이미지 영역에서 점군 데이터(Point-cloud Data)를 처리하기 위해서는 많은 연산량이 필요하다. 더군다나 현재 관측되고 있는 평면의 개수가 몇 개인지 미리 알 수 없으며, 평면으로 검출(Plane Detection) 하더라도 강인하게 3차원에서 평면을 추정(Plane Estimation)하려면 추가적인 연산이 필요하다. 본 논문에서는 연속 데이터를 이용해 실시간으로 평면의 개수를 선택하며 평면을 추정하는 방법을 제시하고자 한다. 실험 결과를 통해 제안하는 방법이 전체 데이터를 처리하는 것에 비해 약 22배의 속도 개선을 가져 올 수 있음을 보였다.

심도카메라 기반의 실시간 얼굴 나이 인식 시스템 설계 (A Design of Real-time Facial Age Recognition System based on Depth-Camera)

  • 고기남;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.655-657
    • /
    • 2012
  • 본 논문에서는 심도(Depth) 카메라로부터 실시간 획득한 RGBD 데이터에서 심도 정보 기반의 AAM(Active Appearance Models)과 나이 인식 알고리즘[1]을 통해 4 개의 AG(Age Group)으로 분류하는 실시간 얼굴 나이 인식 시스템(Real-time Facial Age Recognition System)을 설계한다. 기존의 AAM 을 이용한 실시간 얼굴 특징 추출은 평균 약 4.17%의 프레임 손실율을 보였으나, 심도 정보를 활용한 AAM 은 평균 약 0.43%의 프레임 손실율만을 보였다[5]. 본 논문에서는 심도 정보를 활용한 AAM과 병렬 처리 방법인 CUDA 를 결합하여 나이 특징을 추출하고, 실시간 시스템에 적용 가능하도록 나이 인식 알고리즘을 개선하여 실시간 나이 인식 시스템을 설계한다. 설계된 시스템은 1)머리 위치 추적, 2)얼굴 인식 및 특징점 추출, 3)나이 특징 추출, 4) 나이 특징 분석, 5) 나이 분류의 5 가지 단계를 통해 최종적으로 4 개의 AG 로 분류한다.

Skeleton Joints 기반 행동 분류 모델 설계 (Design of Behavioral Classification Model Based on Skeleton Joints)

  • 조재현;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.1101-1104
    • /
    • 2019
  • 키넥트는 RGBD 카메라로 인체의 뼈대와 관절을 3D 공간에서 스켈레톤 데이터수집을 가능하게 해주었다. 스켈레톤 데이터를 활용한 행동 분류는 RNN, CNN 등 다양한 인공 신경망으로 접근하고 있다. 본 연구는 키넥트를 이용해서 Skeleton Joints를 수집하고, DNN 기반 스켈레톤 모델링 학습으로 행동을 분류한다. Skeleton Joints Processing 과정은 키넥트의 Depth Map 기반의 Skeleton Tracker로 25가지 Skeleton Joints 좌표를 얻고, 학습을 위한 전처리 과정으로 각 좌표를 상대좌표로 변경하고 데이터 수를 제한하며, Joint가 트래킹 되지 않은 부분에 대한 예외 처리를 수행한다. 스켈레톤 모델링 학습 과정에선 3계층의 DNN 신경망을 구축하고, softmax_cross_entropy 함수로 Skeleton Joints를 집는 모션, 내려놓는 모션, 팔짱 낀 모션, 얼굴을 가까이 가져가는 모션 해서 4가지 행동으로 분류한다.

얼굴 포즈 추정을 이용한 다중 RGB-D 카메라 기반의 2D - 3D 얼굴 인증을 위한 시스템 (2D - 3D Human Face Verification System based on Multiple RGB-D Camera using Head Pose Estimation)

  • 김정민;이성철;김학일
    • 정보보호학회논문지
    • /
    • 제24권4호
    • /
    • pp.607-616
    • /
    • 2014
  • 현재 영상감시 시스템에서 얼굴 인식을 통한 사람의 신원 확인은 정면 얼굴이 아닌 관계로 매우 어려운 기술에 속한다. 일반적인 사람들의 얼굴 영상과 입력된 얼굴 영상을 비교하여 유사도를 파악하고 신원을 확인 하는 기술은 각도의 차이에 따라 정확도의 오차가 심해진다. 이런 문제를 해결하기 위해 본 논문에서는 POSIT을 사용하여 얼굴 포즈 측정을 하고, 추정된 각도를 이용하여 3D 얼굴 영상을 제작 후 매칭 하여 일반적인 정면 영상끼리의 매칭이 아닌 rotated face를 이용한 매칭을 해보기로 한다. 얼굴을 매칭 하는 데는 상용화된 얼굴인식 알고리즘을 사용하였다. 얼굴 포즈 추정은 $10^{\circ}$이내의 오차를 보였고, 얼굴인증 성능은 약 95% 정도임을 확인하였다.