• 제목/요약/키워드: RGB ortho-image

검색결과 11건 처리시간 0.028초

딥러닝 기반 소나무 재선충 피해목 탐색 (Searching the Damaged Pine Trees from Wilt Disease Based on Deep Learning)

  • 장예예;유첩;김병준;선주남;이준환
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.46-51
    • /
    • 2020
  • 소나무 재선충은 한국과 일본, 중국을 포함한 동아시아 지역의 소나무산림에 막대한 피해를 주는 원인이며, 피해목의 조기 발견과 제거는 재선충 확산을 막는 효과적인 방법이다. 본 논문에서는 드론으로 촬영되고 처리된 RGB 정사영상을 딥러닝 분류에 의한 재선충 피해목 탐색방법을 제안한다. 제안된 방법은 학습영상 데이터가 많지 않다는 가정아래 ResNet18을 백본으로 하는 패치기반의 분류기를 구성하고 RGB 정사영상을 분류하고 그 결과를 heatmap 형태로 만든다. 제작된 정사영상의 heat map는 재선충 피해목의 분포를 알아내고 확산해가는 모습을 관찰할 수 있게 하며, 재선충 피해목 지역의 RGB 분포 특징을 추출해낼 수도 있다. 본 연구의 패치기반 분류기 성능은 94.7%의 정확도를 나타내었다.

고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구 (A study of Landcover Classification Methods Using Airborne Digital Ortho Imagery in Stream Corridor)

  • 김영진;차수영;조용현
    • 대한원격탐사학회지
    • /
    • 제30권2호
    • /
    • pp.207-218
    • /
    • 2014
  • 하천을 복원하거나 정비하는데 있어서 중요한 하천의 실태를 파악하는데, 하천 피복상태 정보는 매우 중요하다. 본 연구의 목적은 하천의 피복상태 정보를 효율적이고 경제적으로 획득하기 위해 고해상도 항공정사영상의 효과적인 분류를 위한 감독분류 방법을 시험하고 하천토지피복지도 작성을 위한 최적 분류 방법을 검증하였다. 항공 정사영상의 CIR 영상과 RGB 영상을 이용한 하천토지피복 분석과정은 하천토지피복분류 항목 선정, 감독분류, 정확도 평가 및 분류지도 작성의 순서로 수행하였다. 분류 항목은 수역, 도로, 건물, 초지, 산림, 나지, 밭의 7가지 항목을 선정하였다. 감독 분류 알고리즘으로는 최대우도분류, 최소거리분류, 평행육면체분류, 마하라노비스거리분류 기법을 적용하였다. 감독분류의 분류정확도를 개선하기 위해 필터링과 훈련지역의 왜도 검증을 수행한 결과 CIR 영상을 이용한 최대우도분류 기법이 가장 높은 정확도를 보였다.

항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류 (Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning)

  • 손보경;이연수;임정호
    • 한국지리정보학회지
    • /
    • 제24권3호
    • /
    • pp.83-98
    • /
    • 2021
  • 도시녹지는 도시 생태계 건강성 증진을 위한 중요한 요소이며, 건강한 도시 생태계 유지 및 관리를 위해서는 도시녹지의 공간적인 현황 파악이 필요하다. 환경부에서는 2010년 이후부터 총 41개의 분류 항목을 갖는 1m 급 해상도의 세분류 토지피복지도를 제공해오고 있으나, 가로수와 같은 도시 내 고해상도 상세 녹지 정보는 기타 초지로 분류되거나 누락되어 오고 있다. 따라서, 본 연구에서는 수원시 지역을 대상으로 1m 이하 급의 고해상도 원격탐사 자료(항공 LiDAR 및 RGB 정사영상)를 이용하여, 기존 세분류 토지피복지도에서는 나타나지 않는 고해상도의 상세 도시 녹지(수목, 관목 및 초지) 정보를 분류하고자 하였다. 분류 기법으로는 딥러닝 기반의 이미지 분할방법인 U-Net 구조의 모델을 활용하였으며, 분류 항목의 수 및 사용하는 자료의 종류에 따라 총 3가지의 모델(LRGB10, LRGB5, 및 RGB5)을 제안하고 성능을 평가하였다. 검증 지역에 대한 세 모델의 평균 전체 정확도는 각 83.40%(LRGB10), 89.44%(LRGB5), 74.76%(RGB5)이며, 항공 LiDAR와 RGB 정사영상을 함께 사용하여 총 5개의 항목(수목, 관목, 초지, 건물, 및 그 외)을 분류하는 LRGB5 모델의 성능이 가장 높게 나타났다. 수원시의 수목, 관목 및 초지 기준의 전체 녹지 현황은 각 45.61%(LRGB10), 43.47%(LRGB5), 및 44.22%(RGB5)로 나타났으며, 세 모델 모두 기존 세분류 토지피복지도와 비교하여 평균 13.40%의 도시 수목 정보를 더 제공할 수 있는 것으로 나타났다. 더불어 이러한 도시녹지 분류 결과는 향후 중분류 토지피복지도와 같은 기존 GIS 정보와의 융합을 통해 가로수 녹지 비율 현황 등 추가적인 상세 녹지 현황 정보를 제공할 수 있어, 다양한 도시녹지 연구 및 정책의 기초 자료로 활용될 수 있을 것으로 기대된다.

마이크로 UAV 다중영상센서 페이로드개발과 정사영상제작 (The Development of a Multi-sensor Payload for a Micro UAV and Generation of Ortho-images)

  • 한승희
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1645-1653
    • /
    • 2014
  • 대부분의 지형정보획득을 위한 영상에는 RGB, 근적외선, 열영상이 주로 사용된다. 이 멀티밴드영상은 위성이나 유인항공기에 탑재되어 획득되고 있으나 주기해상도, 비용, 공간해상도, 그리고 구름의 영향 등으로 사용자를 만족시키기 어렵다. 자동항법UAV에 적합한 페이로드와 콘트롤러를 개발한다면 원하는 시간과 주기로 고해상도 멀티밴드영상을 획득할 수 있다. 본 연구에서는 멀티밴드 영상획득을 위한 센서와 페이로드의 개발을 통해 저가의 고해상 영상획득시스템을 구축하고 이를 이용하여 geo-referencing data와 함께 RGB, NIR과 열영상을 획득하였다. 획득한 RGB영상으로 정사모자익영상을 제작하여 검사점에 대한 위치정확도를 분석한 결과 수평좌표에서 0.181m, 수직좌표에서 0.203m의 편차를 얻을 수 있었다. 이는 1:1,000~5000수치지도제작과 소규모지역에 대한 원격탐측이 가능한 공간정확도를 만족하므로 페이로드의 활용성을 검증할 수 있었으며 활용이 기대된다.

랜덤포레스트와 서포트벡터머신 기법을 적용한 포인트 클라우드와 실감정사영상을 이용한 객체분류 (Object Classification Using Point Cloud and True Ortho-image by Applying Random Forest and Support Vector Machine Techniques)

  • 서홍덕;김의명
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.405-416
    • /
    • 2019
  • 정보통신기술의 발달로 인하여 데이터의 생산과 처리 속도가 빨라지고 있다. 인공지능의 한 분야인 머신러닝을 이용하여 객체를 분류하기 위해, 학습에 필요한 데이터는 인터넷과 공간정보기술의 발달로 인하여 손쉽게 수집할 수 있게 되었다. 공간정보 분야에서도 머신러닝은 영상, 포인트 클라우드 등을 이용하여 객체를 분류 또는 인식하는 것에 적용되고 있다. 본 연구에서는 기 구축된 수치지도 버전 1.0을 활용하여 학습 데이터를 수동으로 구축하는 문제점을 개선하고 영상과 포인트 클라우드를 이용하여 도로, 건물, 식생을 분류하는 기법을 제안하였다. 실험을 통해서 RGB 밴드만을 갖고 있는 실감정사영상을 사용하였을 경우 색상을 뚜렷하게 구분할 수 있는 도로, 건물, 식생의 분류가 가능하였지만 색상이 유사한 경우에는 분류가 잘 되지 않는 한계를 확인할 수 있었다. 이를 개선하기 위해 실감정사영상과 정규수치표면모델을 밴드 퓨전한 후 랜덤포레스트와 서포트벡터머신 기법을 적용하였으며 이를 통해 85%이상의 정확도로 도로, 건물, 식생을 분류하였다.

RADARSAT SAR 영상을 이용한 농촌지역 소하천주변의 침수피해지역 추정 연구 (A Study on the Extraction of Flood Inundated Scar of Rural Small Stream Area Using RADARSAT SAR Images)

  • 이미선;박근애;김성준
    • 한국수자원학회논문집
    • /
    • 제39권11호
    • /
    • pp.969-976
    • /
    • 2006
  • 본 연구의 목적은 홍수범람 시에도 침수상황의 파악이 가능한 RADARSAT SAR 영상을 이용하여 안성천 농촌유역의 홍수에 의한 침수지역을 추정하고자 하였다. 분석에 사용된 영상은 안성천유역에 1998년 8월 9일에 발생한 홍수피해시기를 중심으로 홍수 전, 직후, 후의 세 시기 영상을 선정하였다. 5m DEM을 이용하여 정사보정을 실시한 후, 세 영상의 RGB 합성방법을 실시한 결과 침수된 지역의 공간적 위치를 파악할 수 있었으며, 영상간의 연산방법인 Ratio 방법을 적용하여 보다 정확한 침수영역을 추출할 수 있었다. 침수지역은 성환천과 학정천의 합류지점 부근의 농경지로 추정할 수 있었으며, 침수영역은 하천으로부터 도로 및 농로의 경계까지 진행되었음을 확인할 수 있었다. 본 연구의 결과는 농촌지역의 소규모로 산재하여 발생한 침수지역의 자료를 작성하고, 그 결과를 정량적으로 제시하는 방법으로 활용될 수 있을 것이다.

고정익 UAV를 이용한 고해상도 영상의 토지피복분류 (Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV)

  • 양승룡;이학술
    • 한국재난정보학회 논문집
    • /
    • 제14권4호
    • /
    • pp.501-509
    • /
    • 2018
  • 연구목적: UAV기반의 사진측량은 기존 항공촬영에 비해 비용이 절감될 뿐만 아니라 원하는 시간과 장소에 대한 고해상도의 데이터를 취득하기 용이하기 때문에, 공간정보 분야에서도 UAV를 활용한 연구가 진행되고 있다. 본 연구에서는 UAV 기반의 고해상도 영상을 활용하여 토지피복 분류를 수행하고자 하였다. 연구방법: 고해상도 영상의 획득을 위하여 RGB카메라를 사용하였으며, 추가적으로 식생지역을 정확하게 분류하기 위해서 다중분광 카메라를 사용하여 동일 지역을 추가 촬영하였다. 최종적으로 RGB 및 다중분광 카메라를 이용하여 생성된 정사영상, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix)을 이용하여 대표적인 감독분류기법인 RF(Random Forest)방법을 이용해 총 7개 클래스에 대해 토지피복분류를 수행하였다. 연구결과: 분류정확도 평가를 위해 오차행렬을 기반으로 한 정확도 평가를 실시하였으며, 정확도 평가 결과 RGB 영상만을 이용한 감독분류결과와 비교하여 제안 방법이 해당 지역의 클래스를 효과적으로 분류할 수 있음을 확인하였다. 결론: 본 연구에서 제안한 정사영상, 다중분광영상, NDVI, GLCM을 모두 추가한 경우 기존의 정사영상만을 이용하였을 때 보다 높은 정확도를 나타냈다. 추후 연구로는 추가적인 입력자료의 개발을 통해 분류 정확도를 향상시키고자 한다.

RADARSAT SAR 영상을 이용한 농촌 소하천주변의 침수피해지역 추정연구 (A Study on the Extraction of Flood Inundated Scar of Rural Small Stream Using RADARSAT SAR Images)

  • 이미선;박근애;김성준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.300-305
    • /
    • 2005
  • To trace the flood inundation area around rural small stream, RADARSAT image was applied because it has the ability of acquiring data during storm period irrespective of rain and cloud. For the storm of 9 August, 1998 in Anseong-cheon watershed, three temporal RADARSAT images before, just after and after the storm were used. After ortho-rectification using 5 m DEM, two methods of RGB composition and ratio were tried and found the inundated area in the tributary stream, Seonghwan-cheon and Hakseong-cheon. The inundated area had occurred at the joint area of two streams, thus the floodwater overflowed bounding discharge capacity of the stream. The progression of damage areas were stopped by the local road and farm road along the paddy.

  • PDF

UAV 기반 식생지수를 활용한 상록수 분포면적 분석 (The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index)

  • 이근상
    • 지적과 국토정보
    • /
    • 제47권1호
    • /
    • pp.15-26
    • /
    • 2017
  • 도시화에 따른 녹지의 감소로 서식처 피괴, 대기오염, 열섬효과 등 많은 환경문제들이 발생하고 있다. 최근에는 자연경관에 대한 관심이 높아지면서 겨울철에도 서식하는 상록수의 적정 관리가 중요하게 대두되고 있다. 본 연구에서는 UAV 기반 식생지수를 이용하여 상록수 분포면적을 분석하였다. 먼저 고정익 UAV에 RGB와 NIR+RG 카메라를 탑재하였으며 Pix4D SW 기반 GCP점을 활용하여 영상접합을 수행하였다. 그리고 취득한 정사영상으로부터 밴드계산 기능을 통해 NDVI와 SAVI 식생지수를 계산하였다. 식생지수 구간별 상록수 분포의 정확도를 평가하기 위해 검정점을 이용하였으며, 분석 결과 "NDVI > 0.5"와 "SAVI > 0.7" 구간에서 Kappa 계수가 각각 0.822와 0.816로 가장 높게 나타났다. GIS 공간분석을 통해 계산한 "NDVI > 0.5"와 "SAVI > 0.7" 구간에서의 상록수 분포면적은 각각 $11,824m^2$$15,648m^2$로 계산되었으며 이는 전체면적 대비 4.8%와 6.3%에 해당되는 비율이다. 이와 같이 도심지 환경, 대기오염, 기후변화, 열섬효과 등과 관련하여 식생을 분석하는 업무에서 UAV가 최신의 고해상도 정보를 제공해 줄 수 있으리라 판단된다.

무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 연구 (A Study on Field Compost Detection by Using Unmanned AerialVehicle Image and Semantic Segmentation Technique based Deep Learning)

  • 김나경;박미소;정민지;황도현;윤홍주
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.367-378
    • /
    • 2021
  • 야적퇴비는 대표적인 축산계 비점오염원으로 강우로 인해 수계로 유입될 경우 야적퇴비에 포함된 인과 질소 등의 영양염류가 하천 수질에 악영향을 미칠 수 있다. 이에 본 논문에서는 무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 방법을 제안한다. 연구지역에서 취득한 39개의 정사영상을 토대로 Data Augmentation을 통해 약 30,000개의 데이터를 확보하였다. 취득한 데이터를 U-net을 기반으로 개발된 의미론적 분할 알고리즘에 적용시킨 후 OpenCV의 필터링 기법을 적용하여 정확도를 평가하였다. 정확도 평가 결과 화소정확도는 99.97%, 정밀도는 83.80%, 재현율은 60.95%, F1- Score는 70.57%의 정확도를 보였다. 정밀도에 비해 재현율이 떨어지는 것은 정성적으로 보았을 때 전체 이미지에서 가장자리에 작은 비율로 야적퇴비 픽셀이 존재하는 경우 과소추정되었기 때문이다. 향후 추가적인 데이터셋과 RGB 밴드 이외의 추가 밴드를 조합한다면 모델 정확도를 향상시킬 수 있을 것으로 판단된다.